Erratum: Comparison of search templates for gravitational waves from binary inspiral [Phys. Rev. D 63, 044023 (2001)]

Thibault Damour

Bala R. Iyer
B. S. Sathyaprakash
(Received 21 June 2005; published 12 July 2005)
DOI: 10.1103/PhysRevD.72.029902
PACS numbers: $04.30 . \mathrm{Db}, 04.25 . \mathrm{Nx}, 04.80 . \mathrm{Nn}, 95.55 . \mathrm{Ym}, 99.10 . \mathrm{Cd}$

Recently [1], an erratum has appeared correcting some coefficients in the computation of tails in the flux of gravitational waves \mathcal{L} from compact binaries in Ref. [2]. As a consequence, some post-Newtonian coefficients in the paper [3] are modified. The correction affects only the η-dependent terms in the coefficients at 2.5 PN order, i.e. column 6 of Table I.

TABLE . Taylor coefficients of the flux, phase, time and frequency. N denotes the "Newtonian value" and $\theta=\left[\eta\left(t_{\text {lso }}-t\right) /(5 m)\right]^{-1 / 8}$. In all cases the $k=0$ coefficient is 1 and the $k=1$ coefficient is zero. In certain cases the 2.5 PN term involves $v^{5} \log v$ or $\theta^{5} \log \theta$ term rather than a v^{5} or θ^{5} term. In those cases we conventionally include the $\log v$ dependence in the listed coefficient. Chirp parameters $\tau_{k}, k \geq 1$, are related to the expansion parameters t_{k}^{v} and ϕ_{k}^{v} via $\tau_{k}=\left(8 \phi_{k}^{v}-5 t_{k}^{v}\right) / 3$. We have given the simplified expressions for these in all cases, except $k=5$ where no simplification occurs due to the presence of the log term in ϕ_{5}^{v}.

k	N	2	3	4	5
$\hat{\mathcal{F}}_{k}$	$\frac{32 \eta^{2} v^{10}}{5}$	$-\frac{1247}{336}-\frac{35 \eta}{12}$	4π	$-\frac{44711}{9072}+\frac{9271 \eta}{504}+\frac{65 \eta^{2}}{18}$	$-\left(\frac{8191}{672}+\frac{583 \eta}{24}\right) \pi$
\hat{t}_{k}^{v}	$-\frac{5 m}{256 \eta v^{8}}$	$\frac{743}{252}+\frac{11 \eta}{3}$	$-\frac{32 \pi}{5}$	$\frac{3058673}{508032}+\frac{5429 \eta}{504}+\frac{617 \eta^{2}}{72}$	$-\left(\frac{7729}{252}-\frac{13}{3} \eta\right) \pi$
$\hat{\phi}_{k}^{v}$	$-\frac{1}{16 \eta v^{5}}$	$\frac{3715}{1008}+\frac{55 \eta}{12}$	-10π	$\frac{15293365}{1016064}+\frac{27145 \eta}{1008}+\frac{3085 \eta^{2}}{144}$	$\left(\frac{38645}{672}-\frac{65 \eta}{8}\right) \pi \ln \left(\frac{v}{v_{\text {los }}}\right)$
$\hat{\phi}_{k}^{t}$	$-\frac{2}{\eta \theta^{5}}$	$\frac{3715}{8064}+\frac{55 \eta}{96}$	$-\frac{3 \pi}{4}$	$\frac{9275495}{14450688}+\frac{284875 \eta}{258048}+\frac{1855 \eta^{2}}{2048}$	$\left(\frac{38645}{21504}-\frac{65 \eta}{256}\right) \pi \ln \left(\frac{\theta}{\theta_{\text {lso }}}\right)$
\hat{F}_{k}^{t}	$\frac{\theta^{3}}{8 \pi m}$	$\frac{743}{2688}+\frac{11 \eta}{32}$	$-\frac{3 \pi}{10}$	$\frac{1855099}{14450688}+\frac{56975 \eta}{258048}+\frac{371 \eta^{2}}{2048}$	$-\left(\frac{7729}{21504}-\frac{13}{256} \eta\right) \pi$
$\hat{\tau}_{k}$	$\frac{3}{128 \eta}$	$\frac{5}{9}\left(\frac{743}{84}+11 \eta\right)$	-16π	$2 \phi_{4}^{v}$	$\frac{1}{3}\left(8 \phi_{5}^{v}-5 t_{5}^{v}\right)$

[1] L. Blanchet, Phys. Rev. D 71, 129904(E) (2005).
[2] L. Blanchet, Phys. Rev. D 54, 1417 (1996).
[3] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev. D 63, 044023 (2001).

