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The post-post-Newtonian~2PN! accurate mass quadrupole moment, for compact binaries of arbitrary mass
ratio, moving in general orbits is obtained by the multipolar post Minkowskian approach of Blanchet, Damour,
and Iyer. Using this, for binaries in general orbits, the 2PN contributions to the gravitational waveform, and the
associated far-zone energy and angular momentum fluxes are computed. For quasielliptic orbits, the energy and
angular momentum fluxes are averaged over an orbital period, and employed to determine the 2PN corrections
to the rate of decay of the orbital elements.@S0556-2821~97!01824-9#
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I. INTRODUCTION

Inspiraling compact binaries are one of the most promis-
ing sources of gravitational radiation for kilometer size laser
interferometric gravitational wave detectors such as the La-
ser Interferometric Gravitational Wave Observatory~LIGO!
@1# and VIRGO@2#. The method of matched filtering will be
employed to detect and extract information of binaries from
the inspiral waveforms@3,4#. In this technique one cross cor-
relates the noisy output of a detector with theoretical tem-
plates. For this technique to be successful, the templates
must remain in phase with the exact—general relativistic—
waveform as long as possible. If the signal and template lose
phase with each other even by a cycle in the ten thousand as
the waves sweep through the bandwidth of the detector their
cross-correlation will be significantly reduced and one may
lose the event altogether. Detailed works on data analysis
aspects@5–8# bears out this inference and one is forced to a
description of the evolution of the binary system, using the
best available theory of gravity to substantially higher accu-
racy than that provided by the lowest order Newtonian ap-
proximation. The construction of accurate theoretical tem-
plates for inspiraling compact binaries involves the solution
to two different but related aspects referred to respectively as
the ‘‘wave generation problem’’ and the ‘‘radiation reaction
problem.’’ In the generation problem one computes the
gravitational waveforms and the associated energy and angu-
lar momentum fluxes emitted by the binary for a fixed, speci-
fied orbital motion ignoring the back reaction of the radiation
emission on the orbit. In the radiation reaction problem on
the other hand, one computes the effect of the emitted radia-
tion on the orbital phase evolution and this is of crucial im-
portance as explained earlier.

Einstein’s@9# far field quadrupole equation is the solution
to the generation problem to the lowest order but applies
only to objects held together by nongravitational forces.
Fock @10# and Landau-Lifshiftz@11# provided two very dif-
ferent methods to generalize the above results to weakly self-
gravitating systems and the two approaches are the starting
points for the two methods available today to calculate gravi-
tational wave generation to higher orders: the Blanchet-
Damour-Iyer~BDI! @12# approach and the Epstein-Wagoner-

Thorne-Will-Wiseman~EWTWW! @13# approach.
The BDI approach builds on a Fock-type derivation using

the double-expansion method of Bonnor@14#. This approach
makes a clean separation of the near-zone and the wave-zone
effects. It is mathematically well defined, algorithmic, and
provides corrections to the quadrupolar formalism in the
form of compact support integrals or more generally well-
defined analytically continued integrals. The scheme has a
modular structure: the final results are obtained by combin-
ing an ‘‘external zone module’’ with a ‘‘near zone module’’
and a ‘‘radiative zone module.’’ For dealing with strongly
self-gravitating material sources such as neutron stars or
black holes one needs to use a ‘‘compact body module’’
supplemented by an ‘‘equation of motion module’’ to de-
scribe their ‘‘conservative’’ orbital motion. Using this ap-
proach the generation of gravitational waves from inspiraling
compact binaries of arbitrary mass ratio moving in aqua-
sicircular orbit has been computed to 2PN accuracy@15,16#
and more recently to 2.5PN accuracy@17#. In this paper, in
the first instance, using the BDI approach, we extend the
above 2PN treatment to inspiralling compact binaries mov-
ing in a general orbitand compute the 2PN contributions to
the waveform and the energy flux. Unlike for circular orbits,
the angular momentum flux from general orbits provides ad-
ditional, independent information and we also compute the
same.

The Epstein-Wagoner-Thorne-Will-Wiseman approach
on the other hand, builds on a Landau-Lifshiftz type treat-
ment to derive post-Newtonian corrections to the lowest or-
der quadrupole formula. The combined use of an effective
stress energy tensor for the gravitational field~with noncom-
pact support! and of formal post-Newtonian expansions led
to the appearance of divergent integrals. The presense of the
divergent integrals and the lack of a clear separation between
the near zone and the wave zone were unsatisfactory features
of this scheme until recently. However, last year, Will and
Wiseman@18# have provided a resolution to this problem by
taking literally the statement that the solution is aretarded
integral, i.e., an integral over the entire past null cone of the
field point. A careful evaluation of the far-zone contribu-
tions, then shows that all integrations are indeed convergent
and finite and moreover the tail terms are also correctly re-
covered. Using this treatment, Will and Wiseman have com-
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puted the 2PN accurate waveform and energy flux forgen-
eral orbits. We thus have two approaches to the 2PN
generation, which can provide a useful check on the long and
tedious algebra.

The most accurate results to date for the generation and
the radiation reaction have been obtained in the limit where a
test body orbits a very massive central body. In this comple-
mentary approach, based on black hole perturbation tech-
niques there exist numerical results that are exact in (v/c)
and analytical results accurate to the 5.5PN order, i.e., cor-
rections ofO@(v/c)11# for a test particle in a circular orbit
around a Schwarzschild black hole@19–26#, wherev is the
orbital velocity of the test particle. For a test particle in a
slightly eccentric orbit, around a spinning black hole expres-
sions for the energy and the angular momentum fluxes have
also been computed to the 2.5PN order@24#.

It is well known that, when gravitational waves from pro-
totype systems such as the binary pulsar 1913116 enter the
bandwidth of the terrestial interferometric detectors, the ec-
centricity of these binary systems would have been drasti-
cally reduced and have become negligible due to the gravi-
tational radiation reaction. A treatment of such systems is
simpler since the quasicircular approximation for their orbits
is amply adequate and the corresponding waveforms do not
depend on the eccentricity parameter of the orbit. However,
there exist scenarios in which the eccentricity is no longer
negligible and this would require the more general treatment
provided in this paper and independently by Will and Wise-
man @18#. One such possibility has been discussed by Sha-
piro and Teukolsky@27# in the context of the formation of
supermassive black holes. They consider a cluster of com-
pact objects—neutron stars and black holes—residing at the
center of a galactic nucleus. Coulomb scattering and dissipa-
tive processes will drive such a cluster to a high density, high
redshift state. Once the central redshift becomes sufficiently
large, relativistic instability sets in, and the core undergoes
catastrophic collapse to form a supermassive black hole.
Quinlan and Shapiro@28# have shown that during the final
year of the evolution of such a cluster, just prior to the cata-
strophic collapse, there can be 1002104 evolving black hole
binaries in eccentric orbits driven by gravitational radiation
reaction, with masses in the range 102100M ( . Ground
based interferometric detectors will be sensitive to the gravi-
tational radiation from these binaries in eccentric orbits and
such eccentric binaries may prove to be another possible
class of gravitational wave sources. More recently, Flanagan
and Hughes@29# suggest that intermediate mass black hole
binaries of the kind considered above—with total masses in
the range 50M (<M< ~a few! 3103M (—may well be the
first sources to be detected by LIGO and VIRGO. The other
possibility involves compact objects orbiting 106 to 107M (

black holes, that seem fairly common in galactic nuclei. In
this case the compact objects could be scattered into very
eccentric orbits orbits via gravitational deflections by other
stars. However, by the time gravitational radiation reaction
becomes the dominant orbital driving force, there is not
enough inspiral remaining to fully circularize these orbits.
Hills and Bender@30# have argued that the event rates for the
above process are very encouraging and the chances of such
signals being observed by Laser Interferometric Space An-
tenna~LISA! @31# appear very good.

The expressions for the far-zone energy and angular mo-
mentum fluxes find application in another related but distinct
problem—the evolution of the orbital elements of systems
such as the binary pulsar 1913116—most importantly the
orbital period, and to a lesser extent the eccentricity and
semimajor axis. This application, in addition to the genera-
tion results discussed earlier, requires a convenient represen-
tation of the post-Newtonian motion of two point masses in
elliptical orbits. To 1PN accuracy, such a quasi-Keplerian
representation has been provided by Damour and Deruelle
@32#, while to the 2PN order a generalized quasi-Keplerian
representation has been implemented by Damour, Scha¨fer,
and Wex @33–36#. This representation differs from the
Keplerian representation of the Newtonian motion through
the appearance of three eccentricities instead of one, and a
constant measuring the secular advance of the periastron.
Starting from the above representation of the orbital ele-
ments in terms of the conserved energy and angular momen-
tum, one computes the time variation of the orbital elements.
One ends up with a result, in terms of the time variation of
the ‘‘conserved’’ energy and angular momentum. By a heu-
ristic argument, one replaces these by the correspondingav-
eragefar-zone fluxes which may be computed by averaging
the far-zone fluxes over an orbital period, using the quasi-
Keplerian orbital representation. The reduction in the orbital
period, accurately inferred from the timing data of the binary
pulsars is in excellent agreement with the rigorous predic-
tions of general relativity@37–41#, which in turn are consis-
tent with the results of the above heuristic approach
@42,44,45#. Extending the above approach, Blanchet and
Schäfer have obtained the 1PN and the 1.5PN corrections to
Ṗ, the rate of decay of the orbital periodP @46,47#. They
have shown that for PSR 1913116, the relative 1PN and
1.5PN corrections are numerically equal to12.1531025

and11.6531027, respectively. These are unfortunately far
below the present accuracy in the measurements ofṖ for
1913116. Junker and Scha¨fer @48# computed the 1PN con-
tributions to the gravitational waveforms, the associated an-
gular and linear momentum fluxes and used it to compute the
evolution of the orbital elements in the quasi-Keplerian rep-
resentation. In the other part of the paper, we extend the
above computations to obtain the 2PN corrections to the evo-
lution of orbital elements, taking due care of a new compli-
cation at this order that the far-zone fluxes are computed in
the harmonic or De Donder coordinates, while the orbital
representation is available in the Arnowitt-Deser-Misner
~ADM ! coordinates.

Briefly, in this paper we obtain the termsO(e2) in the
expressions below, wheree;v2/c2'Gm/c2 r ; m,r ,v, be-
ing the total mass, the distance between the bodies and the
relative velocity of the two bodies, respectively,

I i j 5~ I i j !N$11O~e!1O~e2!1•••%, ~1.1a!

hkm
TT5~hkm

TT!N$11O~e0.5!1O~e!1O~e1.5!1O~e2!1•••%,
~1.1b!

dE
dt

5S dE
dt D

N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1c!
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dJ
dt

5S dJ
dt D

N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1d!

K dE
dt L 5 K dE

dt L
N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1e!

K dJ
dt L 5 K dJ

dt L
N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1f!

K dar

dt L 5 K dar

dt L
N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1g!

K der

dt L 5 K der

dt L
N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1h!

dP

dt
5S dP

dt D
N

$11O~e!1O~e1.5!1O~e2!1•••%,

~1.1i!

and whereI i j is the mass quadrupole moment for a system of
two compact objects moving in general orbits whilehkm

TT is
the transverse-traceless~TT! part of the radiation field, rep-
resenting the deviation of the metric from the flat spacetime.
In the abovedE/dt,dJ/dt are the far-zone energy and angu-
lar momentum fluxes,̂ dE/dt& and ^dJ/dt& represent the
averages of the far-zone fluxes over an orbital period, while
^dar /dt&, ^der /dt& along withdP/dt give the gravitational
radiation driven rate of decay of the orbital elements of the

binary in the generalized quasi-Keplerian parametrization.
Note that the suffixN denotes Newtonian contribution in all
the above equations. For example (hkm

TT)N denotes the New-
tonian contribution to the waveform given by
$2 G/(c4 R)%Pi jkm I i j

(2) . See Eq.~5.1! for our notation.
The plan of the paper is as follows. In Sec. II, using the

BDI approach, we compute the 2PN accurate mass quadru-
pole moment for two masses moving on general orbits. We
also obtain and list the mass and the current moments to the
required accuracy, needed to compute the 2PN accurate
waveform. In Sec. III we calculate the 2PN contributions to
the far-zone energy and angular momentum fluxes and dis-
cuss the limiting forms of these expressions. In Sec. IV, for
the quasielliptic case, we average the above expressions over
an orbital period to obtain the 2PN corrections to^dE/dt&,
^dJ/dt&, and the rate of decay of the orbital elements. Sec-
tion V computes the 2PN contribution to gravitational wave
form for general orbits. Section VI contains the summary
and a few concluding remarks. In Appendix A we list iden-
tities, that are used in the computations, especially, of the
waveform. Finally, in Appendix B, we sketch the steps in-
volved in verifying the equivalence of our waveform ob-
tained using the symmetric trace-free~STF! multipoles of the
radiative field and the Will-Wiseman one obtained using the
Epstein-Wagoner multipoles.

II. MASS AND CURRENT MOMENTS OF
COMPACT BINARIES ON GENERAL ORBITS

FOR 2PN GENERATION

A. 2PN mass quadrupole moment

The starting point for the computation of the 2PN accu-
rate mass moment is the form of the moment quoted in@16#,
i.e., Eq.~2.17!:

I L~ t !5FPB50E d3xuxuBH x̂LFs2
4

c4 sUss1
4

c4UsssG1
uxu2x̂L

2c2~2l 13!
] t

2s2
4~2l 11!x̂iL

c2~ l 11!~2l 13!
] tF S 11

2U

c2 Ds i

2
2Ui

c2 s1
1

pGc2S ] jU] iU j2
3

4
] iU] jU j D G1

uxu4x̂L

8c4~2l 13!~2l 15!
] t

4s2
2~2l 11!uxu2x̂iL

c4~ l 11!~2l 13!~2l 15!
] t

3s i

1
2~2l 11!x̂i jL

c4~ l 11!~ l 12!~2l 15!
] t

2Fs i j 1
1

4pG
] iU] jUG1

x̂L

pGc4F2Ui] i j U j2Ui j ] i j U2
1

2
~] iUi !

2

12] iU j] jUi2
1

2
] t

2~U2!1Wi j ] i j UG J 1O~«5!. ~2.1!

The symbol FPB50 in the above stands for ‘‘finite part at
B50’’ and denotes a mathematically well-defined operation
of analytic continuation. For more details see@16#.

As emphasized in@16# though the above expression is
mathematically well defined, it is a nontrivial and long cal-
culation to rewrite it explicitly in terms of the source vari-
ables only. This is achieved by representing the stress energy
tensor of the source as a sum of Diracd functions:

Tmn~x,t !5 (
A51

N

mA

dyA
m

dt

dyA
n

dt

1

A2g

dt

dt
d„x2yA~ t !…,

~2.2!

wheremA denotes the~constant! Schwarzschild mass of the
Ath compact body. Evaluating this to 2PN accuracy we ob-
tain for the source variables
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s~x,t !5 (
A51

N

mA~ t !S 11
vA

2

c2D d1„x2yA~ t !…, ~2.3a!

s i~x,t !5 (
A51

N

mA~ t !vA
i d„x2yA~ t !…, ~2.3b!

s i j ~x,t !5 (
A51

N

mA~ t !vA
i vA

j d„x2yA~ t !…, ~2.3c!

wherevA
i [dyA

i /dt and

mA~ t !5mA$11~d2!A1~d4!A%, ~2.4a!

d2[
1

c2H 1

2
v22VJ , ~2.4b!

d4[
1

c4H 3

8
v41

3

2
Uv224Uiv i22F1

3

2
U214UssJ .

~2.4c!

In the aboveV denotes the combination

V[U1
1

2c2 ] t
2X , ~2.5!

the potential appearing naturally in the 1PN near-zone metric
in harmonic coordinates. The subscriptA appearing in Eq.
~2.4a! indicates that one must replace the field pointx by the
position yA of the Ath mass point, while discarding all the
ill-defined ~formally infinite! terms arising in the limit
x→yA . For instance

~U !A5G (
BÞA

mB~ t !~11vB
2/c2!

uyA2yBu
, ~2.6a!

~Uss!A5G (
BÞA

mB~ t !vB
2

uyA2yBu
, ~2.6b!

~F!A5G (
BÞA

mB~ t !~11vB
2/c2!~U !B

uyA2yBu
, ~2.6c!

~X!A5G (
BÞA

mB~ t !~11vB
2/c2!uyA2yBu. ~2.6d!

@Note that the second time derivative appearing inV, Eq.
~2.5!, must be explicated before making the replacement
x→yA(t).#

The terms in Eq.~2.1! fall into three types: compact
terms,Y terms, andW terms. The compact terms, where the
three-dimensional integral extends only over the compact
support of the material sources—theY terms involving
three-dimensional integral of the product of two Newtonian-
like potentials—and theW term involving three-dimensional
integrals of terms trilinear in source variables. The evalua-
tion of these different terms proceeds exactly as in the circu-
lar case. In fact if the time derivatives are not explicitly
implemented the expression in the general case and the cir-
cular case would be identical. The difference obtains when
the time derivatives are implemented using the equation of

motion. In this section we need to use the general form of the
Damour-Deruelle equations of motion rather than the re-
stricted form of the circular orbit equations of motion rel-
evant in@16#.

We take up the compact terms first. They are given by

I L
~C!5 (

A51

N H m̃AF12
4

c4Uss
A 1

4

c4 UA~vA!2G ŷA
L

1
1

2~2l 13!c2

d2

dt2
~m̃AyA

2 ŷA
L !

1
1

8~2l 13!~2l 15!c4

d4

dt4
„m̃A~yA

2 !2ŷA
L
…

2
4~2l 11!

~ l 11!~2l 13!c2

d

dt

3S FmAS 11
2UA

c2 D vA
i 2

2Ui
A

c2 m̃AG ŷA
iL D

2
2~2l 11!

~ l 11!~2l 13!~2l 15!c4

d3

dt3
~mAvA

i yA
2 ŷA

iL !

1
2~2l 11!

~ l 11!~ l 12!~2l 15!c4

d2

dt2
~mAvA

i vA
j ŷA

i jL !J ,

~2.7!

in which we have introduced for convenience
m̃A[mA(11vA

2/c2). In the above form the moment depends
not only on the position and velocity of the bodies but on
higher time derivatives. It is in the reduction of these deriva-
tives that we need the 2PN accurate equation of motion for
general orbits. We use a harmonic coordinate system in
which the 2PN center of mass is at rest at the origin. Using
the 2PN accurate center of mass theorem, in the center of
mass frame, we can express the individual positions of the
two bodies moving in general orbits in terms of their relative
positionx5y12y2 and velocityv5v12v2 :

y15H X21
hdm

2mc2Fv22
Gm

r G1
x1

c4J x1
x2

c4
v, ~2.8a!

y25H 2X11
hdm

2mc2Fv22
Gm

r G1
x1

c4J x1
x2

c4
v, ~2.8b!

where r 5uy12y2u is the harmonic separation between the
two bodies. The explicit values ofx1 andx2 are not needed
in our calculations and hence not given above. The above
equations are obtained by setting equal to zero the conserved
mass dipoleG for general orbits. Here we denote

m[m11m2 , dm[m12m2 ,

X1[
m1

m
, X2[

m2

m
512X1 ,

h[X1X25
m1m2

m2
[

m

m
. ~2.9!
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The 2PN accurate equations of motion is written down
next for completeness, where finite-size effects, such as spin-
orbit, spin-spin, or tidal interactions are ignored@49–51#. For
the relative motion we have

a5aN1aPN
~1!1a2PN

~2! 1O~e5!, ~2.10!

where the subscripts denote the nature of the term, Newton-
ian (N), post-Newtonian~PN!, post-post-Newtonian~2PN!,
and the superscripts denote the order ine. The explicit ex-
pressions for various terms mentioned above are given by

aN52
Gm

r 2 n, ~2.11a!

aPN
~1!52

Gm

c2 r 2H F22~21h!
Gm

r
1~113h!v22

3

2
h ṙ 2Gn

22~22h! ṙvJ , ~2.11b!

a2PN
~2! 52

Gm

c4r 2H F3

4
~12129h!

G2m2

r 2 1h~324h!v41
15

8
h~1

23h! ṙ 42
3

2
h~324h!v2ṙ 2

2
1

2
h~1324h!

Gm

r
v2

2~2125h12h2!
Gm

r
ṙ 2Gn

2
1

2Fh~1514h!v22~4141h18h2!
Gm

r

23h~312h! ṙ 2G ṙvJ , ~2.11c!

wheren5x/r and ṙ 5dr/dt.
We have on hand all the ingredients to computeI c .

Though long and tedious the computation is straightforward
and yields for the 2PN mass quadrupole:

I i j
[C]5hmSTFi j H xi j 1

1

42c2H xi j F29~123h!v226~528h!
Gm

r G224~123h!r ṙ xiv j122~123h!r 2v i j J
1

1

1512c4Fv4~75925505h110635h2!1
G2m2

r 2
~175826468h11878h2!1v2

Gm

r
~5818216742h212166h2!

2 ṙ 2
Gm

r
~203826662h1146h2!Gxi j 1

1

378c4Fv2~12321011h12199h2!1
Gm

r
~681434h22090h2!

130ṙ 2~125h15h2!G r 2v i j 2
1

378c4FGm

r
~1011287h21655h2!1v2~15621212h12508h2!G r ṙ xiv jJ . ~2.12!

The Y terms on the other hand are given by

I i j
[Y]52

2Gm1m2

c4 H 2Yv1v2

i j 2Yv1v1

i j 2
1

2v1
Yv2

i j 12v2
Yv1

i j

2
1

2
] t

2~Yi j !2
20

21
] tF v2

Ya
ai j2

3

4v1
Ya

ai j G
1

5

216
] t

2@aYb
abi j#J 1~1↔2!, ~2.13!

where following@16#

v1
Yv2

L 5v1
a v2

b
aYb

L , ~2.14a!

aYb
L5]y

1
a ]y

2
bYL, ~2.14b!

YL~y1 ,y2!5
uy12y2u

l 11 (
p50

l

y1
^ l 2py2

p& , ~2.14c!

so that

Yv1v2

i j [2v1
sv2

kYsk
i j , ~2.15a!

Ysk
i j 5

1

3

]

]y2
s

]

]y2
k

r 12~y1
i j 1y1

~ i y2
j !1y2

i j , ~2.15b!

r 125uy12y2u. ~2.15c!

The explication of all the above terms finally leads us to

I i j
[Y]52

2mh

63c4

Gm

r
STFi j H xi j F ~v22 ṙ 2!~372101h250h2!

1
Gm

r
~18254h23h2!G2r 2v i j ~118292h110h2!

1r ṙ xiv j~822362h116h2!J . ~2.16!
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The evaluation of theI [W] term, the new feature at 2PN
level, was discussed in detail in@16#. The W term has been
evaluated there for general orbits and we need to use the
same result here. We have

I i j
[W]52

hm

c4

G2m2

r 2
STFi j $@215h#xi j %. ~2.17!

Adding up the compact, i.e.,C, Y, and W contributions
given by Eqs.~2.12!, ~2.16!, and~2.17!, we finally obtain the
expression for the 2PN accurate mass quadrupole for a sys-
tem of two bodies moving in general orbits. The final result
is written below as a combination of the three possible com-
binationsxi j ,xiv j ,v i j with coefficients which include correc-
tions beyond the Newtonian order at 1PN and 2PN orders:

I i j 5mSTFi j H xi j F11
1

42c2S ~29287h!v22~30248h!
Gm

r D1
1

c4S 1

504
~25321835h13545h2!v41

1

756
~202125947h

24883h2!
Gm

r
v22

1

756
~1312907h11273h2!

Gm

r
ṙ 22

1

252
~35511906h2337h2!

G2m2

r 2 D G2xiv jF r ṙ

42c2
~24272h!

1
r ṙ

c4S 1

63
~262202h1418h2!v21

1

378
~108524057h21463h2!

Gm

r D G1v i j F r 2

21c2
~11233h!1

r 2

c4S 1

126
~412337h

1733h2!v21
5

63
~125h15h2! ṙ 21

1

189
~7422335h2985h2!

Gm

r D G J . ~2.18!

The above expression is identical to the one obtained by Will
and Wiseman in Appendix E of@18# using the new improved
version of the Epstein-Wagoner formalism. In their treatment
the Epstein-Wagoner multipoles appear more naturally, us-
ing which they compute the STF mass quadrupole moment.
Since the approach employed here and in@18# follow alge-
braically different routes, the above match provides a valu-
able check on the long and complicated algebra involved in
the determination of the crucial mass quadrupole moment for
2PN generation.

B. The other relevant mass and current moments

In this section we list the higher order mass and current
multipole moments, required to compute the 2PN contribu-
tions to the gravitational waveform and the associated far-
zone energy and angular momentum fluxes. They are
straightforwardly obtained by explicating the point particle
limits of the more general expressions in the earlier BDI
papers@12#:

I i jk52S m
dm

m DSTFi jk H xi jkF11
1

6c2S ~5219h!v2

2~5213h!
Gm

r D G2xi j vkF r ṙ

c2
~122h!G

1xiv jkF r 2

c2
~122h!G J , ~2.19!

I i jkl 5mSTFi jkl H xi jkl F ~123h!1
1

110c2S ~1032735h

11395h2!v22~1002610h11050h2!
Gm

r D G
2v ixjklF72r ṙ

55c2
~125h15h2!G1v i j xklF 78r 2

55c2

3~125h15h2!G J , ~2.20!

I i jklm52S m
dm

m D ~122h!STFi jklm$xi jklm%, ~2.21!

I i jklmn5m~125h15h2!STFi jklmn$x
i jklmn%, ~2.22!

Ji j 52S m
dm

m DSTFi j e jabH xiavbF11
1

28c2S ~13268h!v2

1~54160h!
Gm

r D G1v ibxaF r ṙ

28c2
~5210h!G J ,

~2.23!
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Ji jk5mSTFi jkekabH xai jvbF ~123h!1
1

90c2S ~412385h

1925h2!v21~1402160h2860h2!
Gm

r D G1
7r 2

45c2
~1

25h15h2! xav i jb1
10r ṙ

45c2
~125h15h2!xaivb jJ ,

~2.24!

Ji jkl 52S m
dm

m
~122h! DSTFi jkl $e lab xai jkvb%,

~2.25!

Ji jklm5@m ~125h15h2!#STFi jklm$emab xai jklvb%.
~2.26!

The mass and the current moments listed above, agree with
Eqs. ~E3! of @18#. For the case of circular orbits, the above
mass and current moments reduce to Eqs.~4.4! of @16#.

III. THE FAR-ZONE FLUXES

A. The energy flux

As discussed in@16# the end result of the 2PN accurate
generation formalism is an expression relating the radiative
mass and current multipole momentsUL and VL , respec-
tively to the source mass and current multipole momentsI L
and JL , respectively, obtained in the previous section. In
particular,

Ui j ~TR!5I i j
~2!~TR!1

2Gm

c3 E
0

1`

dtF lnS t

2bD
1

11

12G I i j
~4!~TR2t!1O~«5! , ~3.1a!

Ui jk~TR!5I i jk
~3!~TR!1

2Gm

c3 E
0

1`

dtF lnS t

2bD1
97

60G
3I i jk

~5!~TR2t!1O~«5! , ~3.1b!

Vi j ~TR!5Ji j
~2!~TR!1

2Gm

c3 E
0

1`

dtF lnS t

2bD1
7

6GJi j
~4!~TR2t!

1O~«4! ~3.1c!

for the moments that need to be known beyond the 1PN
accuracy, and

UL~TR!5I L
~ l !~TR!1O~«3!, ~3.2a!

VL~TR!5JL
~ l !~TR!1O~«3! ~3.2b!

for the other ones. The integrals in the above expressions,
associated with the gravitational wave tails, contain in addi-
tion to the total mass-energy of the sourcem, a quantityb

which is an arbitrary constant with dimensions of time pa-
rametrizing a freedom associated in the construction of the
far-zone radiative coordinate system.

In terms of the STF radiative moments of the gravitational
field the far-zone energy flux to 2PN accuracy is given by
@17# ~with U (n)[dnU/dTR

n)

S dE
dt D

far-zone

5
G

c5H 1

5
Ui j

~1!Ui j
~1!1

1

c2F 1

189
Ui jk

~1!Ui jk
~1!

1
16

45
Vi j

~1!Vi j
~1!G1

1

c4F 1

9072
Ui jkm

~1! Ui jkm
~1!

1
1

84
Vi jk

~1!Vi jk
~1!G1O~«6!J . ~3.3!

The 2PN-accurate energy loss given by Eq.~3.3! splits
naturally into an ‘‘instantaneous’’ contribution and a ‘‘tail’’
one. In this paper, we deal only with the instantaneous con-
tribution, which is given by@52,16#

S dE
dt D

far-zone

inst

5
G

c5H 1

5
I i j

~3!I i j
~3!1

1

c2F 1

189
I i jk

~4!I i jk
~4!1

16

45
Ji j

~3!Ji j
~3!G

1
1

c4F 1

9072
I i jkm

~5! I i jkm
~5! 1

1

84
Ji jk

~4!Ji jk
~4!G J . ~3.4!

Here I L
(n) denotes thenth time derivative of STF multipole

moment of rankL. All the computations from here onwards
are performed, usingMAPLE @53#. Evaluating the relevant
time derivatives of the multipole moments in Eq.~3.4!, using
the post-Newtonian equations of motion to the appropriate
order we obtain

S dE
dt D

far-zone

inst

5 ĖN1 Ė1PN1 Ė2PN , ~3.5a!

ĖN5
8

15

G3m2m2

c5r 4
$12v2211ṙ 2%, ~3.5b!

Ė1PN5
8

15

G3m2m2

c7r 4 H 1

28F ~7852852h!v4

22~148721392h!v2ṙ 22160~172h!
Gm

r
v2

13~6872620h! ṙ 418~367215h!
Gm

r
ṙ 2

116~124h!
G2m2

r 2 G J , ~3.5c!
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Ė2PN5
8

15

G3m2m2

c9r 4 H 1

42
~169225497h14430h2!v62

1

14
~1719210278h16292h2!v4ṙ 22

1

21
~444625237h11393h2!

3
Gm

r
v41

1

14
~2018215207h17572h2!v2ṙ 41

1

7
~498728513h12165h2!

Gm

r
v2ṙ 2

1
1

756
~281473181828h14368h2!

G2m2

r 2
v22

1

42
~2501220234h18404h2! ṙ 6

2
1

63
~33510260971h114290h2!

Gm

r
ṙ 42

1

252
~10631919798h15376h2!

G2m2

r 2
ṙ 2

1
2

63
~225311026h256h2!

G3m3

r 3 J . ~3.5d!

Equations~3.5! are in exact agreement with the results of
Will and Wiseman using the new improved Epstein-
Wagoner approach@18#. Circular and radial infall limits of
Eqs.~3.5! are in agreement with earlier results@54,16,60,18#
and discussed further in Sec. III C.

The tail contribution, on the other hand is given by

S dE
dt D

far-zone

tail

5
2G

5c5

2Gm

c3 I i j
~3!~TR!E

0

1`

dt lnS t

2b1
D

3I i j
~5!~TR2t!, ~3.6!

whereb1[be211/12. A detailed discussion of the tail terms
and its implications has been given by Blanchet and Scha¨fer
@47#, and we do not discuss it any further in this paper.

B. The angular momentum flux

In terms of the STF radiative multipole moments the far-
zone angular momentum flux to 2PN accuracy is given by

S dJi

dt D
far-zone

5
G

c5 e ipqH 2

5
Up jUq j

~1!1
1

c2F 1

63
Up jkUq jk

~1!

1
32

45
Vp jVq j

~1!G1
1

c4F 1

2268
Up jklUq jkl

~1!

1
1

28
Vp jkVq jk

~1! G J . ~3.7!

As before, rewriting the radiative moments in terms of the
source moments, allows us to separate the instantaneous and
tail contributions and we discuss them independently. We
have@52#

S dJi

dt D
far-zone

inst

5
G

c5 e ipqH 2

5
I p j

~2!I q j
~3!1

1

c2F 1

63
I p jk

~3! I q jk
~4!

1
32

45
Jp j

~2!Jq j
~3!G1

1

c4F 1

2268
I p jkl

~4! I q jkl
~5!

1
1

28
Jp jk

~3! Jq jk
~4! G J . ~3.8!

Computing the required time derivatives of the STF mo-
ments, using the post-Newtonian equations of motion to the
appropriate order, we obtain

S dJ
dt D

far-zone

inst

5J̇N1J̇1PN1J̇2PN , ~3.9a!

J̇N5
8

5

G2mm2

c5r 3 L̃NH 2v223ṙ 212
Gm

r J , ~3.9b!

J̇1PN5
8

5

G2mm2

c7r 3 L̃NH 1

84F ~3072548h!v426~74

2277h!v2ṙ 224~58195h!
Gm

r
v213~952360h! ṙ 4

12~3721197h!
Gm

r
ṙ222~74522h!

G2m2

r 2 G J ,

~3.9c!
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J̇2PN5
8

5

G2mm2

c9r 3 L̃NH 1

504F ~2665212355h112894h2!v623~2246212653h115637h2!v4ṙ21~1652491h

14022h2!
Gm

r
v413~3575216805h115680h2!v2ṙ41~21853221603h12551h2!

Gm

r
v2ṙ222~10651210179h

13428h2!
G2m2

r 2
v2228~1952815h1485h2! ṙ 62~22312241 398h196 95h2! ṙ 4

Gm

r
12~8436225102h

14587h2!
G2m2

r 2
ṙ 2G1

1

2268
~170362170461h11386h2!

G3m3

r 3 J , ~3.9d!

whereL̃N5r3v. The 1PN contribution is in agreement with
the earlier results of Junker and Scha¨fer @48#. The 2PN con-
tribution is new and together with the energy flux obtained in
the earlier section forms the starting point for the computa-
tion the 2PN radiation reaction for compact binary
systems—4.5PN terms in the equation of motion@55#—
using the refined balance method proposed by Iyer and Will
@56,57#. The tail terms, in the angular momentum flux are
given by

S dJi

dt D
far-zone

tail

5
2G

5c5

2Gm

c3 e i jk I kl
~3!~TR!E

0

1`

dt lnS t

2b1
D

3I j l
~4!~TR2t! . ~3.10!

We will not be discussing the tails terms here, as they are
extensively studied by Rieth and Scha¨fer @58#.

C. Limits

All the complicated formulae, discussed in the earlier sec-
tions take more simpler forms for quasicircular orbits. For
compact binaries like PSR 1913116, quasicircular orbits
should provide a good description close to the inspiral phase,
since gravitational radiation reaction would have reduced the
present eccentricity, to vanishingly small values. In this con-
text ‘‘quasi’’ implies the slow inspiral caused by the radia-
tion reaction. The quasicircular orbit is characterized by
r̈ 5 ṙ 5O(e2.5). The 2PN equations of motion become

a[
dv

dt
[

d2x

dt2
52v2PN

2 x1O~e2.5! , ~3.11!

with v2PN, the 2PN accurate orbital frequency, is given by

v2PN
2 [

Gm

r 3 H 12~32h!g1S 61
41

4
h1h2Dg2J ,

~3.12!

whereg5Gm/c2r . Note that Eqs.~3.11! imply as usual, that
v[uvu5v2PNr 1O(e2.5), so that from Eq.~3.12! we get

v25
Gm

r H 12~32h!g1S 61
41

4
h1h2Dg2J .

~3.13!

Substitutingṙ 50 in Eqs.~3.5!, and using Eq.~3.13! we ob-
tain the 2PN corrections to the far-zone energy flux for com-
pact binaries of arbitrary mass ratio, moving in a quasicircu-
lar orbit

S dE
dt D

far-zone

inst

5
32

5

c5

G
h2g5H 12gS 2927

336
1

5

4
h D

1g2S 293383

9072
1

380

9
h D J . ~3.14!

Equation~3.14! is consistent with results of@54,16,18#.
The energy and angular momentum fluxes are not inde-

pendent but related in the case of circular orbits. The precise
relation may be written following@59# as

S dE
dt D

far-zone

5v2J̇, ~3.15a!

where

S dJ
dt D

far-zone

[L̃NJ̇, ~3.15b!

wherev2 defined in terms ofGm/r , is given by Eq.~3.13!
@16#.

The other limiting case we compare to corresponds to the
case of radial infall of two compact objects of comparable
masses. Equations representing the head-on infall can be ob-
tained from the expressions for the general orbit by imposing
the restrictionsx5zn̂, v5 żn̂, r 5z, and v5 ṙ 5 ż. We con-
sider two different cases, following Simone, Poisson, and
Will @60#. In case~A!, the radial infall proceeds from rest at
infinite initial separation, which implies that the conserved
energyE(z)5E(`)50. In case~B!, the radial infall pro-
ceeds from rest at finite initial separationz0, which implies

E~z5z0!52mc2g0H 12
1

2
g01

1

2F11
15

2
hGg0

2J ,

~3.16!

where g05Gm/z0c2. Inverting E(z) for ż2 and using Eq.
~3.16! we obtain
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ż52cH 2~g2g0!F125gS 12
h

2 D1g0S 12
9h

2 D
1g2S 132

81h

4
15h2D2gg0S 52

173h

4
113h2D

1g0
2S 12

5h

4
18h2D G J 1/2

, ~3.17!

where g5Gm/zc2. Using the radial infall restrictions and
Eq. ~3.17! in Eqs.~3.5! we obtain for case~B!, the far-zone
radiative energy flux

S dE
dt D

far-zone

inst

5
16

15
c5h2g5H 12x2

1

7F432
111

2
h2x~116

2131h!1x2S 712
135h

2 D Gg2
1

3F1127

9

1
803

12
h2112h21

x

7S 4471

9
2

15481h

3

12864h2D2
x2

7 S 18702
38521h

6
1

8800h2

3 D
1x3S 832

1183h

4
1

872h2

7 D Gg2J , ~3.18!

where x5g0 /g. For case~A!, the expressions forż and
dE/dt are obtained by settingg050 in Eqs. ~3.17! and
~3.18!. Equation ~3.18!, along with corresponding one for
case~A! are in agreement with@60#.

IV. THE EVOLUTION OF THE ORBITAL ELEMENTS
IN THE GENERALIZED QUASI-KEPLERIAN

PARAMETRIZATION OF THE BINARY

In this section, we compute the 2PN corrections to the
rate of decay of the orbital elements of a compact binary, in
quasi-elliptical orbit, i.e., the effect of the 4.5PN radiation
reaction on a 2PN accurate conservative elliptical motion,
extending the earlier computations@46–48#. The basic ingre-
dients we employ for the calculations are the far-zone energy
and angular momentum fluxes in the harmonic coordinates
computed in previous sections and a 2PN accurate descrip-
tion of the relative motion of the compact binaries available
in a generalized quasi-Keplerian parametrization given in the
ADM coordinates@34–36#. Since the De-Donder~harmonic!
and the ADM coordinates are different at the 2PN order, we
use the coordinate transformations connecting the harmonic
and the ADM coordinates@61#, to rewrite the far-zone fluxes
in the ADM coordinates. The far zone fluxes, in the ADM
coordinates are averaged over an orbital period, extending
the earlier computations at the 1PN and the 1.5PN order
@46–48,58#. The 2PN corrections to the rate of decay of the
orbital elements are computed using heuristic arguments
based on the conservation of energy and angular momentum
to the 2PN order. Before proceeding to the actual computa-
tions, in the next two sections, we summarize the generalized
quasi-Keplerian description of the binary orbits in the ADM
coordinates and the transformations needed, to relate the ki-

nematical variables in the harmonic and the ADM coordi-
nates.

A. The second post-Newtonian motion of compact binaries

The generalized quasi-Keplerian description for the gen-
eral binary orbits to the 2PN order, developed by Damour,
Schäfer, and Wex@34–36# is best suited for the calculation
we propose to do in the following sections and we summa-
rize it in what follows. Letr A(tA),fA(tA) be the planar rela-
tive motion of the two compact objects in usual polar coor-
dinates associated with the ADM coordinates. The radial
motion r A(tA) is conveniently parametrized by

r A5ar~12ercosu!, ~4.1a!

n~ tA2t0!5u2etsinu1
f t

c4 sinv1
gt

c4 ~v2u!, ~4.1b!

whereu is the ‘‘eccentric anomaly’’ parametrizing the mo-
tion and the constantsar ,er ,et ,n, and t0 are some 2PN
semimajor axis, radial eccentricity, time eccentricity, mean
motion, and initial instant, respectively. The angular motion
fA(tA) is given by

fA2f05S 11
k

c2D v1
f f

c4
sin2v1

gf

c4
sin3v, ~4.2a!

where

v52tan21H S 11ef

12ef
D 1/2

tanS u

2D J . ~4.2b!

In the abovef0 ,k,ef are some constant, periastron preces-
sion constant, and angular eccentricity, respectively. All the
parametersn, k, ar , et , er , ef , f t , gt , f f , and gf
are functions of the 2PN conserved energy and angular mo-
mentum per unit reduced massm: To avoid additional nota-
tions following @34–36#, these are also denoted asE anduJu.
Their explicit functional forms, given in@35# are displayed
below:

ar52
Gm

2E H 11
1

2c2 ~72h!E1
1

c4F1

4
~1110h1h2!E2

1
1

2
~17211h!

E

h2G J , ~4.3a!

er
25112Eh22

1

c2 $2~62h!E15~32h!E2h2%

1
1

c4H ~261h1h2!E222~17211h!
E

h2

1~80255h14h2!E3h2J , ~4.3b!
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n5
~22E!3/2

Gm H 11
1

4c2 ~152h!E1
1

c4F 1

32
~555130h

111h!E22
3

2
~522h!

~22E!3/2

h G J , ~4.3c!

et
25112Eh21

1

c2 $4~12h!E1~1727h!E2h2%1
1

c4H 2~2

1h15h2!E22~17211h!
E

h21~112247h

116h2!E3h223~522h!~112Eh2!
~22E!3/2

h J ,

~4.3d!

f t52
1

8h
h~41h!~112Eh2!1/2~22E!3/2, ~4.3e!

gt5
3

2
~522h!

~22E!3/2

h
, ~4.3f!

k5
3

h2H 11
1

2c2F ~522h!E1
5

2h2 ~722h!G J , ~4.3g!

f f5
1

8

h

h4 ~123h!~112Eh2!, ~4.3h!

gf52
3

32

h2

h4~112Eh2!3/2, ~4.3i!

ef
2 5112Eh22

1

c2 $12E1~152h!E2h2%2
1

8c4

3H 4~16288h29h2!E224~160230h13h2!E3h2

1~4082232h215h2!
E

h2J , ~4.3j!

where h5uJu/(Gm). Note thatn52p/P, where P is the
period of the binary. Using these parametric equations of the
motion, we computeṙ A

2 ,vA
2 to the 2PN order in terms of

E,h2,(12ercosu) using

dtA
du

5
]tA

]u
1

]tA

]v
dv
du

, ~4.4a!

ṙ A
25S drA

du Y dtA
du D 2

, ~4.4b!

ḟA
25S dfA

dv
dv
duY dtA

du D 2

, ~4.4c!

vA
25 ṙ A

21r A
2ḟA

2 . ~4.4d!

The subscriptA present in Eqs.~4.4! is a reminder that the
expressions refer to the ADM gauge. We have

ṙ A
25H 211

2

~12ercosu!
1

2

~12ercosu!2 Eh2J ~22E!1
1

c2H 2319h1
1

~12ercosu!
@38230h#2

1

~12ercosu!2 @40220h

2~36228h!Eh2#2
1

~12ercosu!3 @~64224h!Eh2#J E22
1

c4H 4219h116h2

2
1

~12ercosu!F1682326h198h22
1

Eh2 ~34222h!G1
1

~12ercosu!2 @4962712h1164h22~2132298h

185h2!Eh2#2
1

~12ercosu!3 @2122332h180h22~8002932h1188h2!Eh2#2
1

~12ercosu!4 @5282528h

196h2#Eh21
1

~12ercosu!5 @3218h2#hE2h4J ~2E!3, ~4.5a!

vA
25H 211

2

~12ercosu!J ~22E!2
1

c2H 329h2
1

~12ercosu!
@38230h#1

1

~12ercosu!2 @40220h#

18
1

~12ercosu!3 hEh2J E22
1

c4H 4219h116h22
1

~12ercosu!F1682326h198h22
1

Eh2 ~34222h!G
1

1

~12ercosu!2 @4282668h1164h2#2
1

~12ercosu!3 @2122332h180h22~76284h!hEh2#2
1

~12ercosu!4 @80

2128h#hEh2172
1

~12ercosu!5 h2E2h4J ~2E!3. ~4.5b!
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These expressions forṙ A
2 andvA

2 are consistent with Eqs.~6!
and ~7! of @62#.

B. The transformation between De-Donder„harmonic…

and ADM gauges

As pointed out earlier, the far-zone fluxes obtained in pre-
vious sections are in the harmonic coordinates, whereas, the
2PN accurate orbital description given by Eqs.~4.1!, ~4.2!,
and ~4.3! are in the ADM coordinates. For the purpose of
averaging the far zone fluxes using the the 2PN accurate
orbital representation, we need to go from the De-Donder
~harmonic! to the ADM gauge, and rewrite the expressions
for the far-zone fluxes in the ADM coordinates. These follow
straightforwardly from the transformation equations in@61#
and we list below the transformation equations, relating the
harmonic~De-Donder! variables to the corresponding ADM
variables:

rD5rA1
Gm

8c4r H F ~5v22 ṙ 2!h12~1112h!
Gm

r G r
218hr ṙ vJ , ~4.6a!

tD5tA2
Gm

c4 h ṙ , ~4.6b!

vD5vA2
Gmṙ

8c4r 2H F7v2138
Gm

r
23ṙ 2Gh14

Gm

r
ṙ J r

2
Gm

8c4r H F5v229ṙ 2234
Gm

r Gh22
Gm

r J v, ~4.6c!

~LN!D5~LN!AH 11
Gm

4c4r F ~2129h!
Gm

r
14h ṙ 2G J ,

~4.6d!

r D5r A1
Gm

8c4H 5hv212~1112h!
Gm

r
219h ṙ 2J ,

~4.6e!

vD
2 5vA

22
Gm

4c4r H @5v422v2ṙ 223ṙ 4#h2@2~1117h!v2

2~4138h! ṙ 2#
Gm

r J , ~4.6f!

ṙ 2
D5 ṙ 2

A2
Gm

2c4r
ṙ 2H 15~v22 ṙ 2!h1~112h!

Gm

r J .

~4.6g!

The subscriptD denotes quantities in the De-Donder~har-
monic! coordinates. Note that in all the above equations the
differences between the two gauges are of the 2PN order. As
there is no difference between the harmonic and the ADM
coordinates to 1PN accuracy, in Eqs.~4.6!, for the 2PN terms
no suffix is used. The 2PN extension of the evolution of the
orbital elements thus requires more technical care than the
1PN case due to the differences in the ADM and harmonic

coordinates given by Eqs.~4.6!. Finally using the above
equations we have verified that the expressions given by Eqs.
~2.8!, relating the individual locations of the two bodies to
the center of mass coordinate are consistent with the corre-
sponding choice in ADM coordinates, given by Eqs.~A5!–
~A8! of @36#.

C. 2PN corrections toŠdE/dt‹ and ŠdJ/dt‹

Starting from Eqs.~3.5! and ~3.9! for the far-zone fluxes
in the harmonic coordinates we use Eqs.~4.6!, to obtain
dE/dt anddJ/dt in the ADM coordinates. For economy of
presentation, we write the results as (flux)A5(flux)O1
‘‘corrections,’’ where (flux)A represent the far-zone flux in
the ADM coordinates. (Flux)O is a short hand notation for
expressions on the right-hand side~RHS! of Eqs. ~3.5! and
~3.9!, wherev2, ṙ ,r are the ADM variablesvA

2 , ṙ A ,r A , re-
spectively. For example, the Newtonian part of (dE/dt)O

will be 8
15G3m2m2/c5r A

4$12vA
2211ṙ A

2%. The ‘‘corrections’’
represent the differences at the 2PN order, that arise due to
the change of the coordinate system, given by Eqs.~4.6!. As
the two coordinates are different at the 2PN order, the ‘‘cor-
rections’’ come only from the leading Newtonian terms in
Eqs.~3.5! and ~3.9!:

S dE
dt D

A

5S dE
dt D

O

2
G4m3m2

15c9r A
5 H @~481336h!vA

2

2~361232h! ṙ A
2 #

Gm

r A
1@360vA

421840vA
2 ṙ A

2

11424ṙ A
4 #hJ ~4.7a!

S dJ
dt D

A

5S dJ
dt D

O

1
G3m2m2~ L̃N!A

5c9r A
4 H F ~4168h!vA

2

2~8176h!
Gm

r A
1~2182h! ṙ A

2 GGm

r A

1~363vA
2 ṙ A

2250vA
42363ṙ A

4 !hJ . ~4.7b!

Note that all the variables on the RHS of Eqs.~4.7! are in the
ADM coordinates. In the circular limit energy and angular
momentum fluxes are again related as in Eqs.~3.15!, via the
correspondingv2 in the ADM coordinates given by

vA
25

Gm

r A
H 12~32h!

Gm

c2r A

1
1

8
~4225h18h2!

G2m2

c4r A
2 J .

~4.8!

From this point onwards, in this section, we work exclu-
sively in the ADM gauge and hence we drop the subscriptA
for the ease of presentation. We now have all the ingredients
needed to calculate the 2PN corrections in^dE/dt& and
^dJ/dt&. We explain in detail, the procedure to compute
^dE/dt& and only display the final expression for^dJ/dt&, as
the procedure is the same in both the cases. Starting from
Eqs.~4.7!, ~3.5!, and~3.9! which give the far zone fluxes as
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functions of v2, ṙ 2, and Gm/r , we use the 2PN accurate
orbital representation, to rewritedE/dt as a polynomial in
(12ercosu)21. This polynomial is of the form

dE
dt

5
du

ndt(N52

8
aN~E,h!

~12ercosu!~N11!
, ~4.9!

where for the convenience we have factored outdu/ndt
given by

du

ndt
5

1

~12ercosu!H 12
E

c2 ~823h!S 12
1

~12ercosu! D
1

1

2c4FE2X~56263h16h2!2
1

Eh2 ~17211h!

3S 12
1

~12ercosu! D2
1

~12ercosu!

3~1842159h124h2!1
1

~12ercosu!2

3~68276h117h2!2
2Eh2

~12ercosu!3 h~41h!C
1

3

h
~22E!3/2~522h!G J . ~4.10!

It is a straightforward algebra to show that the coefficients
aN(E,h) in Eq. ~4.9! take the form

aN~E,h!5
h2

Gc5 ~2E!5bN~E,h!, ~4.11!

wherebN(E,h) for N51,2, . . . ,8 aregiven by

b252
256

15
1

1

105c2 ~29 824215 488h!E

1
1

c4H 2
1

315
~791 1682874 6241179456h2!E2

1
128

5
~17211h!

E

h21
1

5
~6402256h!

~22E!3/2

h J ,

~4.12a!

b35
512

15
2

1

35c2 ~263 68219968h!E1
1

c4H F2716928

315

2
13040896

945
h1

538496

135
h2GE22

896

15
~17211h!

E

h2

2
1

5
~12802512h!

~22E!3/2

h J , ~4.12b!

b452
5632

15
Eh21

1

c2H 1

7
~102423072h!E1

512

105
~1729

2930h! E2 h2J 1
1

c4H S 46840064

2835
1

3537664

945
h

2
2315648

315
h2DE22

128

105
~86403289968h

120923h2! E3h22
256

15
~17211h!

E

h22
1

5
~7040

22816h!~22E!5/2hJ , ~4.12c!

b552
512

105c2 ~323221395h! E2h21
1

c4H 2F14200576

2835

2
38656

189
h2

219904

63
h2G E21

256

945
@148 648 8

21545569h1343813h2# E3h2J , ~4.12d!

b652
512

35c2 ~6872620h!E3h42
1

c4H 256

945
@1221526

21333624h1319739h2# E3h22
512

105
@51396

291541h127508h2# E4h4J , ~4.12e!

b752
512

945c4$748 03221385005h1387911h2% E4h4,

~4.12f!

b852
4096

315c4 $25012202 34h18404h2% E5h6 .

~4.12g!

To 1PN order Eqs.~4.12! agree with Eqs.~4.15! of @46#. The
far-zone energy flux (dE/dt) is a periodic function of time
with period P52p/n. Averaging (dE/dt), given by Eqs.
~4.9!, ~4.11!, and~4.12! over one time period P, we obtain

K dE
dt L 5

1

PE0

P dE
dt

~ t ! dt 5
1

2 pE0

2 pS ndt

du DdE
dt

~u!du .

~4.13!

The integrals in Eq.~4.13! are the Laplace second integrals
for the Legendre polynomials@63# which yield

1

2pE0

2p du

$12ercosu%N11

5
1

~12er
2!~N11!/2

PNS 1

A~12er
2!
D , ~4.14!

wherePN is the Legendre polynomial. Using Eq.~4.14! in
Eq. ~4.13!, we obtain^dE/dt& in terms ofE ander :
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K dE
dt L 5

1024

5

mh

Gmc5

~2E!5

~12er
2!7/2H 11

73

24
er

21
37

96
er

41
1

168

~2E!

c2~12er
2!

F1326414er
22

274 05

4
er

42
537 7

16
er

6

2S 8401
6419

2
er

21
5103

8
er

42
259

8
er

6Dh G2
~2E!2

c4 F 1

16 ~12er
2!5/2

@~4802192h!1~5002200h!er
2

2~22552902h!er
41~10902436h!er

61~185274h!er
8#2

1

~12er
2!2S 253 937

4536
2

180 65

504
h110h2

2S 879 749

4536
2

301 37

72
h2

1877

48
h2Der

22S 513 337

6048
2

531 871

672
h1

1139

192
h2Der

41S 249 479 5

8064
1

4823

128
h2

383

96
h2Der

6

1S 283 685

16128
2

131 47

2688
h1

37

192
h2Der

8D G J . ~4.15!

Following exactly a similar procedure, we obtain the 2PN correction to^dJ/dt&. The final result we obtain is

K dJ
dt L 5

4

5

mh

c5

~22E!7/2

~12er
2!3 H 82er

227er
42

~2E!

168c2 @~292017056h!1~197 381144 34h!er
21~12711330h!er

4#

2
~2E!2

c4 F 1

~12er
2!1/2

~240296h2~30212h!er
22~210284h!er

4!2
1

~12er
2!

S 299 623

1134
2

220 25

252
h1

351

4
h2

2S 131 627 3

864
2

815 597

336
h2

292 07

96
h2Der

22S 290 113 3

6048
2

124 403

96
h2

7187

48
h2Der

4

1S 7526

63
2

2869

224
h1

1435

96
h2Der

6D G J . ~4.16!

To 1PN order, Eqs.~4.15! and ~4.16! agree with@46,48# as required. For the special case of circular orbits,er50 and we
observe that,̂ dE/dt&5v ^dJ/dt& to 2PN order, wherev, the mean angular frequency of the relative motion, defined by
v5n(11k) is given by

v5
~22 E!3/2

Gm H 12
1

4 c2 ~91h!E1
1

32c4 ~281121170h111h2!E2J . ~4.17!

It is not very difficult to trace the origin of the two types of terms in Eqs.~4.15! and~4.16! at the 2PN order. It is related
to the fact that the ‘‘corrections’’ in Eqs.~4.7!, arising from the transformation equations connecting the harmonic and the
ADM coordinates have a different functional form than the 2PN contributions to the corresponding far-zone fluxes in the
harmonic coordinates. For example, in the far-zone energy flux, corrections contain a common factor (G4m3/r 5), unlike the
2PN contributions in harmonic coordinates which have only (G3m2/r 4) as the common factor@cf. Eqs.~3.5! and~4.7!#. These
different functional forms, after the averaging procedure give rise to the two different types of terms in Eqs.~4.15! and~4.16!.

We display beloŵ dE/dt& and ^dJ/dt& in terms ofGm/ar and er , which can easily be obtained from Eqs.~4.15! and
~4.16!, usingE written in terms ofGm/ar ander to the 2PN order. The required equation forE is obtained from Eqs.~4.3!
for ar ander by inverting them forE andh2, respectively, order by order. Eliminatingh2 from the expression forE we finally
get

E52
c2

2
zH 12

1

4
~72h!z1

1

8F ~2522h1h2!22
~17211h!

~12er
2! G z2J , ~4.18!

wherez5G m/c2ar . Using the above expression forE, Eq. ~4.15! becomes

K dE
dt L 5

1

15

c5

G
h2

z5

~12er
2!13/2H @~961292er

2137er
4!~12er

2!3#2
1

56
z~12er

2!2@~468 3216720h!1~198 6641376 32h!er
2

2~153 302280 56h!er
42~127 5322072h!er

6#1z2F 1

6048
~12er

2!@~224 053 121122 492 16h!1~912 416 00

1973 409 76h1290 304h2!er
22~977 677 442731 619 00h2239 500 8h2!er

42~757 105 21606 592 8h

2280 627 2h2!er
61~680 528 72148 921 2h1223 776h2!er

8#2
3

2
~12er

2!5/2@~961292er
2137er

4!~522h!#G J
~4.19!
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while Eq. ~4.16! gets transformed to

K dJ
dt L 5

4

5
mhc2

z7/2

~12er
2!4H ~817er

2!~12er
2!22

1

336
z~12er

2!@~193 8414704h!1~176 801147 28h!er
22~142 79

23388h!er
4#1z2F 1

181 44
~~381 349 61314 114 4h1725 76h2!2~346 264 82137 197 26h2815 724h2!er

2

2~112 754 912786 483h2139 784 4h2!er
41~357 872 42121 329 9h1238 896h2!er

6!

2
3

2
~12er

2!3/2~522h! ~817er
2!G J . ~4.20!

We observe that in the test particle limit (h→0) and for
small radial eccentricities, Eqs.~4.19! and ~4.20! become

K dE
dt L

h50

5
32

5

c5

G

m2

m2 z5H 12
292 7

336
z1

282 043

907 2
z2

1F157

24
2

639 7

84
z1

273 523

864
z2Ger

2J ,

~4.21a!

K dJ
dt L

h50

5
32

5

m2

m
c2 z

7
2H 12

2423

336
z1

340 607

181 44
z21F23

8

2
947 9

336
z1

101 464 7

181 44
z2Ger

2J . ~4.21b!

Such expressions for average energy and angular momentum
fluxes for a test particle moving in a slightly eccentric orbit
around a Schwarzschild black hole have been obtained by
Tagoshi @24#, using black hole perturbation methods: Eqs.
~4.9! and ~4.12! of @24# ~with q50). They are given by

K dE
dt L 5

32

5

m2

Gm2c5 v10H 12
1247

336

v2

c22
447 11

9072

v4

c4

1F37

24
2

65

21

v2

c22
474 409

9072

v4

c4Ge2J , ~4.22a!

K dJ
dt L 5

32

5

m2

m c5 v7H 12
1247

336

v2

c22
447 11

9072

v4

c41F2
5

8

1
749

96

v2

c22
238 229

6048

v4

c4Ge2J , ~4.22b!

wherev ande refer to the radial velocity and the eccentricity
in Schwarzschild coordinates. Equations~4.21! and ~4.22!
are consistent, if the ADM variablesar ander are related to
the Schwarzschild variablesv ande by

Gm

ar
5v2 H 11

v2

c21
5

4

v4

c4 2F11
v2

c22
3329

818

v4

c4G e2J ,

~4.23a!

er
25e2 H 112

v2

c21
1708

409

v4

c4J . ~4.23b!

As stressed by Tagoshi, the fluxes reveal the more familiar
coefficients in terms of a parameterv8, related to the angular
frequency in thef coordinates rather thanv, which is
adapted to the radial coordinater . For slightly eccentric or-
bits, v andv8 are related by

v5v8H 11
1

2F123
v82

c2 212
v84

c4 Ge2J . ~4.24!

In terms of v8 the far-zone fluxes for a test particle in
Schwarzschild geometry, Eqs.~4.22! may be written as

K dE
dt L 5

32

5

m2

Gm2c5 v810H 12
124 7

336

v82

c2 2
447 11

9072

v84

c4

1e2F157

24
2

678 1

168

v82

c2 2
151 18

189

v84

c4 G J , ~4.25a!

K dJ
dt L 5

32

5

m2

m c5 v87H 12
1247

336

v82

c2 2
447 11

9072

v84

c4

1e2F23

8
2

3259

168

v82

c2 2
105 949 3

181 44

v84

c4 G J .

~4.25b!

In this form at the Newtonian order, one recovers the results
of Peters and Mathews@42#. The quantitiesar ander in the
ADM coordinates are related tov8 ande by the relations

Gm

ar
5v82H 11

1

c2 ~122e2! v82

1
1

4 c4S 52
166 55

409
e2D v84J , ~4.26a!

er
25e2H 112

v82

c2 1
1708

409

v84

c4 J . ~4.26b!

The above relations may be rewritten, in terms of the con-
served energyE using @43#

v2522EH 11e22
E

2c2 ~32e2!1
E2

c4 ~1814e2!J ,

~4.27a!
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v82522 EH 12
E

2c2 ~318e2!1
E2

c4 ~18152e2!J .

~4.27b!

We obtain

Gm

ar
5v82H 12

E

c2 ~224e2!1
E2

c4 S 82
15837

409
e2D J ,

~4.28a!

er
25e2H 124

E

c2 1
9286

409

E2

c4 J , ~4.28b!

which are the generalizations of similar 1PN relations in
@48#.

D. The evolution of the orbital elements

In this section, we compute the 2PN corrections to the
evolution of orbital elements due to the emission of gravita-
tional radiation. We describe the procedure to compute the
rate of decrease of the orbital period of the binary in some
detail and display the final expressions for the rate of decay
of other elements; namely,^dar /dt& and^der /dt&. Employ-
ing the Heuristic argument, based on the energy and the an-
gular momentum conservation to the 2PN order, the rate of

decrease of the orbital period,Ṗ of the two compact objects
moving, in quasielliptical orbits is computed. The 2PN accu-
rate orbital period,P52p/n given in @34–36# reads as

P5
2pGm

~22E!3/2H 12
1

4c2 ~152h!E2
3

32c4F ~35130h

13h2!E2216 ~522h!
~22E!3/2

h G J . ~4.29!

Differentiating Eq. ~4.29! with respect tot and equating
dE/dt to (2^dE/dt&/m) and dh/dt to (2^dJ/dt&/Gmm)
we find

Ṗ5
6pGm

~22E!5/2H 12
1

12c2 ~152h!E1
1

32c4 ~35130h

13h2!E2J K dE
dt L 2

3 p

c4 h2 ~522h!K dJ
dt L . ~4.30!

Note that, in the above equation we need^dJ/dt& to the
Newtonian accuracy only. Using in Eq.~4.30!, ^dE/dt&
given by Eq.~4.15! and the Newtonian part of Eq.~4.16! for
^dJ/dt&, we get

Ṗ52
192

5
ph

z5/2

~12er
2!7/2H 11

73

24
er

21
37

96
er

42
1

161 28
z

1

~12er
2!

@~598 561309 12h!1~431 3521134 848h!er
21~168 210

1556 08h!er
42~71792207 2h!er

6#1z2
1

~12er
2!2F 1

580 608
@~763 955 21607 737 6h1483 840h2!1~263 832 80

1814 273 20h1251 596 8h2!er
22~190 546 442825 636 06h2170 553 6h2!er

42~145 177 22532 202 4h

2935 424h2!er
61~159 698 72193 374h1745 92h2!er

8#2
1

64
~522h! ~12er

2!3/2~641296er
2165er

4!G J . ~4.31!

Finally inserting the expressions forer
2 andG m/ar in terms of E andh2 in Eq. ~4.31! we obtain

Ṗ52
p h

5c5

1

~2E!h7H 4251732Eh21148E2h41
1

c2h2F403 41

8
1

381 35

4
Eh21

722 37

14
E2h41

4983

7
E3h6

2S 5635

2
1

481 25

6
Eh21535 4E2h41

140 6

3
E3h6Dh G1

1

c4F 1

672
~291 982 552309 096 90h1690 606 0h2!

1

h4

1
1

432
~293 418 532505 570 59h1187 777 80h2!

E

h21
1

2
~637522550h!

~22E!3/2

h

1
1

252
~864 965 02219 467 70h1137 502 75h2! E22~319521278h!~22E!5/2h1

1

84
~166 451 52206 289 3h

1171 217 2h2! E3h21
1

2
~9752390h! ~22E!7/2h31

1

42
~163 0852693 68h1445 48h2! E4h4G J . ~4.32!

In the expression above,Ṗ is given as a function of the masses and of the 2PN-conserved energy and angular momentum. This
expression forṖ is independent of the coordinate system used to derive it. SinceP is a measurable quantity, one would have
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liked to expressṖ in terms of other directly observable parameters such as the orbital period and some convenient eccentricity
as in the 1PN case@46#. However, at present, to 2PN accuracy we do not have any such suitable and convenient choice and
therefore we leave the expression forṖ in terms of the 2PN accurateE andh2.

Similarly, using the definition ofar ander in terms of E andh2 and following the method described above, we obtain after
a rather long but straightforward calculation

K dar

dt L 52
2

15
hc

z3

~12er
2!11/2H ~12er

2!2~961292er
2137er

4!2
1
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z~12er
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42~449 753 4

2103 086h2123 832 8h2!er
61~262 800 92632 718h1839 16h2!er

8#2
3

2
~12er

2!3/2@~522h!~961292er
2

137er
4!#J , ~4.33!

K der

dt L 52
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m

z4er

~12er
2!9/2H ~3041121er

2!~12er
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1

56
z~12er

2!@~133 6401374 08h!1~108 9841336 84h!er
2

2~252 112338 8h!er
4#1z2F 1

201 6
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6!

2
3

2
~12er

2!6 ~3041121er
2! ~522h!G J . ~4.34!

To 1PN accuracy we recover the results of@48#. For the
special case of circular orbits^dar /dt& takes the simple form

K dar

dt L 52
64

5
z3hcH 12zF1751

336
1

7

4
h G1z2F294 383

181 44

1
263 65

2016
h1

1

2
h2G J . ~4.35!

Equation~4.35! is consistent with the expression forṙ given
in @55#, after taking due account of the coordinate transfor-
mations required to relate the ADM and the harmonic gauges
for the circular orbits.

V. THE 2PN CONTRIBUTION TO THE WAVEFORM

In this section, we compute the instantaneous part of the
2PN accurate gravitational waveform, i.e., the transverse-
traceless~TT! part of the 2PN accurate far-zone field for two
compact objects of arbitrary mass ratio, moving in a general
orbit. It is given by@16#

~hkm
TT! inst5

2G

c4R
Pi jkmH I i j

~2!1
1

cF1

3
NaI i ja

~3!1
4

3
«ab~ iJj )a

~2!NbG
1

1

c2F 1

12
NabI i jab

~4! 1
1

2
«ab~ iJj )ac

~3! NbcG
1

1

c3F 1

60
NabcI i jabc

~5! 1
2

15
«ab~ iJj )acd

~4! NbcdG
1

1

c4F 1

360
NabcdI i jabcd

~6! 1
1

36
«ab~ iJj )acde

~5! NbcdeG J ,

~5.1!

whereR is the Cartesian observer-source distance andNa’s
are the components ofN5X/R, the unit normal in the direc-
tion of the vectorX, pointing from the source to the ob-
server. The transverse traceless projection operator project-
ing orthogonal toX, is given by

Pi jkm~N!5~d ik2NiNk!~d jm2NjNm!

2
1

2
~d i j 2NiNj !~dkm2NkNm!. ~5.2!

Evaluating the appropriate time derivatives of the multipole
moments and performing the relevant contractions withN as
required by Eq. (5.1), some details of which are given in
Appendix A, we obtain
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~hkm
TT! inst5

2Gm

c4R
Pi jkmH j i j

~0!1
1

c

dm

m
j i j

~0.5!1
1

c2 j i j
~1!1

1

c3

dm

m
j i j

~1.5!1
1

c4 j i j
~2!J , ~5.3!

where the variousj i j ’s are given by

j i j
~0!52S v i j 2

Gm

r
ni j D , ~5.4a!

j i j
~0.5!5H 3~N–n!

Gm

r
@2n( iv j )2 ṙ ni j #1~N–v!FGm

r
ni j 22v i j G J , ~5.4b!

j i j
~1!5

1

3H ~123h!F ~N–n!2
Gm

r
XS 3v2215ṙ 217

Gm

r Dni j 130ṙ n( iv j )214v i j C1~N–n!~N–v!
Gm

r
@12ṙ ni j 232n( iv j )#

1~N–v!2S 6v i j 22
Gm

r
ni j D G1F3~123h!v222~223h!

Gm

r Gv i j 14
Gm

r
ṙ ~513h!n~ iv j )1

Gm

r F3~123h! ṙ 22~10

13h!v2129
Gm

r Gni j J , ~5.4c!

j i j
~1.5!5

1

12
~122h!H ~N–n!3

Gm

r F S 45v22105b2190
Gm

r D ṙ ni j 296ṙv i j 2S 42v22210ṙ 2188
Gm

r Dn~ iv j )G
2~N–n!2~N–v!

Gm

r F S 27v22135ṙ 2184
Gm

r Dni j 1336ṙ n~ iv j )2172v i j G2~N–n!~N–v!2
Gm

r
@48ṙ ni j 2184n( iv j )#

1~N–v!3F4
Gm

r
ni j 224v i j G J 2

1

12
~N–n!

Gm

r H F ~69266h!v22~15290h! ṙ 22~242224h!
Gm

r G ṙ ni j 2F ~66236h!v2

1~138184h! ṙ 22~256272h!
Gm

r Gn~ iv j )1~192112h! ṙv i j J 1
1

12
~N–v!H F ~23210h!v22~9218h! ṙ 22~104

212h!
Gm

r GGm

r
ni j 2~88140h!

Gm

r
ṙn~ iv j )2F ~12260h!v22~20252h!

Gm

r Gv i j )J , ~5.4d!

j i j
~2!5

1

120
~125h15h2!H 240~N–v!4v i j 2~N–n!4

Gm

r F S 90v41S 318
Gm

r
21260ṙ 2D v21344

G2 m2

r 2 11890ṙ 4

22310
Gm

r
ṙ 2Dni j 1S 1620v213000

Gm

r
23780ṙ 2D ṙ n~ iv j )2S 336v221680ṙ 21688

Gm

r D v i j G
2~N–n!3~N–v!

Gm

r F S 1440v223360ṙ 213600
Gm

r D ṙ ni j 2S 1608v228040ṙ 213864
Gm

r Dn~ iv j )23960ṙv i j G
1120~N–v!3~N–n!

Gm

r
~3ṙ ni j 220n( iv j )!1~N–n!2~N–v!2

Gm

r F S 396v221980ṙ 211668
Gm

r Dni j 16480ṙ n~ iv j )

23600v ( i j )G J 2
1

30
~N–v!2H F ~872315h1145h2!v22~1352465h175h2! ṙ 22~2892905h1115h2!

Gm

r GGm

r
ni j

2~2402660h2240h2! ṙ n~ iv j )2F ~302270h1630h2!v2260~126h110h2!
Gm

r Gv ( i j )J 1
1

30
~N–n!~N–v!

Gm

r H F ~270

21140h11170h2!v22~602450h1900h2! ṙ 22~127023920h1360h2!
Gm

r G ṙ ni j 2F ~1862810h11450h2!v21~990

22910h2930h2! ṙ 22~124224170h11930h2!
Gm

r Gn~ iv j )1@123023810h290h2# ṙv i j J 1
1

60
~N–n!2

Gm

r H F ~117

2480h1540h2!v42~63022850h14050h2!v2ṙ 22~1252740h1900h2!
Gm

r
v21~10521050h13150h2! ṙ 4
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1~271528580h11260h2!
Gm

r
ṙ 22~104823120h1240h2!

G2m2

r 2 Gni j 1F ~21621380h14320h2!v21~126023300h

23600h2! ṙ 22~3952212860h13660h2!
Gm

r G ṙ n~ iv j )2F ~122180h11160h2!v21~126023840h2780h2! ṙ 22~664

22360h11700h2!
Gm

r Gv i j J 2
1

60H F ~66215h2125h2!v41~902180h2480h2!v2ṙ 22~38911030h2110h2!
Gm

r
v2

1~452225h1225h2! ṙ 41~91521440h1720h2!
Gm

r
ṙ 21~128411090h!

G2m2

r 2 G Gm

r
ni j 2F ~1321540h2580h2!v2

1~30021140h1300h2! ṙ 21~8561400h1700h2!
Gm

r G Gm

r
ṙ n~ iv j )2F ~452315h1585h2!v41~3542210h

2550h2!
Gm

r
v22~270230h1270h2!

Gm

r
ṙ 22~63811400h2130h2!

G2m2

r 2 Gv ( i j )J . ~5.4e!

The ‘‘tail’’ contribution reads

~hkm
TT! tail5

2G

c4R

2Gm

c3 Pi jkmE
0

1`

dtH lnS t

2b1
D I i j

~4!~TR2t!

1
1

3c
lnS t

2b2
DNaI i ja

~5!~TR2t!

1
4

3c
lnS t

2b3
D «ab~ iNbJj )a

~4!~TR2t!J , ~5.5!

where we have used for simplicity the notation

b1[b e211/12, b2[b e297/60, b3[b e27/6. ~5.6!

We do not discuss the ‘‘tail’’ terms in this paper. Some de-
tails of these tail terms may be found in@16,18#.

The first check on the above waveform is its circular
limit, which matches with the waveform computed earlier in
@16#. The next check of the waveform in the general case is
performed by computing the far-zone energy flux using

dE
dt

5
c3 R2

32pGE ~ ḣkm
TTḣkm

TT!dV~N!. ~5.7!

The expression fordE/dt thus obtained is identical to the
far-zone energy flux directly obtained from multipole mo-
ments Eq.~3.5!. Of course, these checks do not uniquely fix
the expressions in Eq.~5.4! and equivalent expressions are
possible leading to the same transverse traceless parts as dis-
cussed below.

The above expressions for the waveform, computed using
STF multipole moments differ from the corresponding ex-
pressions obtained by Will and Wiseman„Eqs. ~6.10!,
~6.11! of @18#…, using the Epstein-Wagoner multipole mo-
ments at 1.5PN and 2PN orders. Though the two expressions
are totally different looking at these orders, even in the cir-
cular limit, it is possible to show that they are equivalent.
The equivalence is established by showing that the differ-
ence between the two expressions, at 1.5PN and 2PN orders
has a vanishing transverse-traceless~TT! part. The easiest

way of verifying this is to show that the ‘‘plus’’ and ‘‘cross’’
polarizations of the difference in the two expressions vanish
at 1.5PN and 2PN orders@64#. In Appendix B, we present
the difference—at 1.5PN and 2PN orders—between our
wave form expression computed directly using the STF mul-
tipoles and the Will-Wiseman one computed using the EW
multipoles and verify their equivalence. Finally we note that
the statement in Appendix E of@18# should more precisely
read that, STF multipole moments presented there yield an
expression for the waveformequivalentto Eqs. ~6.10! and
~6.11! of @18#, and notidentical to it @64#.

VI. CONCLUSION

In this paper using the BDI approach, we have computed
the 2PN contributions to the mass quadrupole moment for
two compat objects of arbitrary mass ratio moving in general
orbits. Using this moment we have computed the 2PN con-
tributions to the gravitational waveform and the associated
energy and angular momentum fluxes. These expressions
have already proved useful in the computation of the 2PN
radiation reaction, i.e., the 4.5PN terms in the equations of
motion @55#, using the refined balance method proposed by
Iyer and Will @56,57#. Work is in progress@65# to obtain the
higher order corrections to the far-zone linear momentum
flux from the gravitational waveform presented here, extend-
ing the treatment of Wiseman@66#. It should be noted that
2PN corrections to the linear momentum flux can be com-
puted only if one knowshjk

TT to 2.5PN accuracy. Using the
2PN accurate generalized quasi-Keplerian representation for
elliptic orbits, we have computed here the instantaneous 2PN
contributions to^dE/dt& and ^dJ/dt&, the fluxes averaged
over one orbital time scale. This is used to compute the evo-
lution of the orbital elements, in particularṖ, ėr andȧr . The
method employed to computêdE/dt& and ^dJ/dt& could
also be adapted to the case of hyperbolic orbits to generalize
the work of Simone, Poisson and Will on the head-on colli-
sion @60#.
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APPENDIX A: STF TENSORS AND FORMULAS
FOR THE WAVEFORM COMPUTATIONS

We present details of the scheme, employed to compute
the contributions tohjk from various multipole moments, as
required by Eqs.~5.1!, ~5.3!, and~5.4!. Our scheme proceeds
in steps. In the first step, we write down schematically, the
form of the desired time derivative of the STF multipole
moment, using the compact notation$ %, introduced by
Blanchet and Damour@12#. Here $ % denotes anunnormal-

izedminimum number of terms, required to make the expres-
sion symmetric in all the indicated indices. The second step
involvespeeling, where by observation and counting, we re-
write the expression obtained in step 1, as STF on the free
indices—i and j in our case. In step 3, we contract, the final
expression of step 2 with appropriate number ofN’s as re-
quired by Eq.~5.1!. The actual evaluation of the result of
step 3 is performed on Maple@53#. In all the formulas,SL
denotes the symmetric version of the object under consider-
ation; e.g.,SL5I (L)

(n) if the object isI L
(n) and SL5J(L)

(m) if the
object isJL

(m)—the object in the formula is obvious from the
context.

The unnormalized symmetric blocks.

d$ i j Sa%5d i j Sa1d ia Sj1d ja Si , ~A1a!

d$ i j Sab%5d i j Sab1d iaSjb1d ibSa j1d jaSib1d jbSai1dabSi j , ~A1b!

d$ i j dab%5d i j dab1d iad jb1d ibda j , ~A1c!

d$ i j Sabc%5d i j Sabc1d iaSjbc1d ibSa jc1d icSab j1d jaSibc1d jbSaic1d jcSabi1dabSi jc1dacSib j1dbcSai j , ~A1d!

d$ i j dabSc%5$@d jadbc1d jbdac1d jcdab#Si1@d iadbc1d ibdac1d icdab#Sj1@d i j dbc1d ibd jc1d icdb j#Sa1@d i j dac1d iad jc

1d icd ja#Sb1@d i j dab1d iad jb1d ibd ja#Sc%, ~A1e!

d$ i j Sabcd%5$d i j Sabcd1d iaSjbcd1d ibSa jcd1d icSab jd1d idSabc j1d jaSibcd1d jbSaicd1d jcSabid1d jdSabci1dabSi jcd1dacSbdi j

1dadSbci j1dbcSadi j1dbdSaci j1dcdSabi j%, ~A1f!

d$ i j dabScd%5$@d i j dab1d iad jb1d ibda j#Scd1@d i j dac1d iad jc1d icda j#Sbd1@d i j dbc1d icd jb1d ibd jc#Sad1@d icdab1d iadcb

1d ibdac#Sjd1@dc jdab1dcad jb1dcbda j#Sid1@d i j dad1d iad jd1d idda j#Scb1@d i j ddb1d idd jb1d ibdd j#Sca

1@d iddab1d iaddb1d ibdad#Sc j1@dd jdab1ddad jb1ddbda j#Sci1@d i j dcd1d icd jd1d iddc j#Sab1@daidcd1d icdad

1d iddac#Sjb1@da jdcd1dcad jd1daddc j#Sib1@d ibdcd1d icddb1d iddbc#Sa j1@db jdcd1dbdd jc1d jddbc#Sai

1@dcddab1dcaddb1dcbdad#Sji %, ~A1g!

d$ i j dabdcd%5$@d i j dab1d iad jb1d ibd ja#dcd1@d i j dac1d iad jc1d icd ja#dbd1@d i j dcb1d icd jb1d ibd jc#dad1@d icdab1d iadcb

1d ibdca#d jd1@dc jdab1dcad jb1dcbd ja#d id% . ~A1h!

The STF tensors.

STFi ja~ I i ja !5Si ja2
1

5
d$ i j Sa%tt , ~A2a!

STFi jab~ I i jab!5Si jab2
1

7
d$ i j Sab%tt1

1

35
d$ i j dab%Ssstt, ~A2b!

STFi jabc~ I i jabc!5Si jabc2
1

9
d$ i j Sabc%tt1

1

63
d$ i j dabSc%sstt, ~A2c!

STFi jabcd~ I i jabcd!5Si jabcd2
1

11
d$ i j Sabcd%pp1

1

99
d$ i j dabScd%ttqq2

1

693
d$ i j dabdcd%Sppqqtt. ~A2d!

The peeling.
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STFi ja~ I i ja !5STFi j H Si ja2
2

5
d iaSjtt J , ~A3a!

STFi jab~ I i jab!5STFi j H Si jab2
1

7
@2d iaSjbtt12d ibSjatt1dbaSjitt #1

2

35
@d iad jbSttss#J , ~A3b!

STFi jabc~ I i jabc!5STFi j H Si jabc2
1

9
@2~d iaSjbcpp1d ibSjacpp1d icSab jpp!1~dabSi jcpp1dacSi jbpp1dbcSi japp!#

1
2

63
@~d jadbc1d jbdac1d jcdab!Sippqq1~d ibd jcSappqq1d iad jcSbppqq1d iad jbScppqq!#J , ~A3c!

STFi jabcd~ I i jabcd!5STFi j H Si jabcd2
1

11
@2~d iaSjbcdpp1d ibSjacdpp1d icSab jdpp1d idSabc jpp!1~dadSbci jpp1dabSdci jpp

1dacSbdi jpp1dbcSadi jpp1dbdSaci jpp1dcdSbai jpp!#1
1

99
@2~d iad jbScdppqq1d iad jcSbdppqq

1d icd jbSadppqq1d iad jdScbppqq1d idd jbSacppqq1d icd jdSbappqq!12~d icdab1d iadcb1d ibdca!Sjdppqq

12~d iddab1d iaddb1d ibdda!Sjcppqq12~d iadcd1d icdda1d iddca!Sjbppqq12~d ibdcd1d icddb

1d iddbc!Sjappqq1~dcddab1dcaddb1ddadcb!Sjippqq#2
2

693
@~d iad jbdcd1d iad jcdbd1d icd jbdad!

1~d icdab1d iadcb1d ibdac!d jd#SppqqttJ . ~A3d!

The contractions with NL.

STFi ja~ I i ja
~3!! Na5STFi j H Si ja

~3! Na2
2

5
NiSjtt

~3!J , ~A4a!

STFi jab~ I i jab
~4! !Nab5STFi j H Si jab

~4! Nab2
1

7
@4NiaSjatt

~4! 1Si jtt
~4! #1

2

35
Ni j Sttss

~4! J , ~A4b!

STFi jabc~ I i jabc
~5! !Nabc5STFi j H Si jabc

~5! Nabc2
6

9
NibcSjbcpp

~5! 2
1

3
Si jcpp

~5! Nc1
6

63
Sippqq

~5! Nj1
6

63
Ni jaSappqq

~5! J , ~A4c!

STFi jabcd~ I i jabcd
~6! !Nabcd5STFi j H Si jabcd

~6! Nabcd2
8

11
Nibcd Sjbcdpp

~6! 2
6

11
Si jcdpp

~6! Ncd1
12

99
Ni jcd Scdppqq

~6! 1
24

99
Nid Sjdppqq

~6!

1
3

99
Si jppqq

~6! 2
12

693
Ni j Sppqqtt

~6! J . ~A4d!

The current multipole moments. epq( i Ĵ j )pL5STFi j $epqiĴ jpL%,

epq~ i Ĵ j )p
~2! Nq5STFi j $epqiSjp

~2! Nq%, ~A5a!

epq~ i Ĵ j )pa
~3! Nqa5STFi j H epqiFSjpa

~3! Nqa2
1

5
Sptt

~3! Nq jG J , ~A5b!

epq~ i Ĵ j )pab
~4! Nqab5STFi j H epqi FSjpab

~4! Nqab2
1

7
~2 Spbtt

~4! Nq jb1Sp jtt
~4! Nq!G J , ~A5c!

epq~ i Ĵ j )pabc
~5! Nqabc5STFi j H epqiFSjpabc

~5! Nqabc2
1

3
~Spbctt

~5! Nq jbc1Sjpctt
~5! Nqc!1

1

21
~Spttvv

~5! Nq j!G J . ~A5d!

The explicit computations of the above equations require the following identities, which are easily derived, using the rules
governing the product ofe ’s. The identities are
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STFi j $epqi Nqyj L̃ p%5STFi j $2~N–v!yi j 1~N–n!r y iv j%, ~A6a!

STFi j $epqi Nqv j L̃ p%5STFi j $2~N–v!yiv j1~N–n! r v i j %, ~A6b!

STFi j $epqi Nq j L̃ p%5STFi j $~N–n! r Niv j2~N–v! yiNj%, ~A6c!

STFi j $epqi NqypL̃ j%5STFi j $2~N–v! yi j 1~N–n! r y iv j1~r ṙ !Niyj2r 2Niv j%, ~A6d!

STFi j $epqi NqvpL̃ j%5STFi j $~N–n! r v i j 2~N–v!yiv j2r ṙ Niv j1v2 Niyj%, ~A6e!

STFi j $epqi Nq jvp~ L̃•N!%5STFi j $@v22~N–v!2#Niyj1@~N–n!~N–v!2 ṙ #rNiv j1@ ṙ ~N–v!2v2~N–n!#rNi j %, ~A6f!

STFi j $epqi Nq jyp~ L̃•N!%5STFi j $@ ṙ 2~N–n!~N–v!#rNiyj1@~N–n!221#r 2Niv j1@~N–v!2 ṙ ~N–n!#r 2Ni j %, ~A6g!

STFi j $epqi Nqyjp~ L̃•N!%5STFi j $@ ṙ 2~N–n!~N–v!#ry i j 1@~N–n!221#r 2yiv j1@~N–v!2 ṙ ~N–n!#r 2Niyj%, ~A6h!

STFi j $epqi Nqyjvp~ L̃•N!%5STFi j $@v22~N–v!2#yi j 1@~N–n!~N–v!2 ṙ #ry iv j1@ ṙ ~N–v!2v2 ~N–n!#rNiyj%, ~A6i!

STFi j $epqi Nqypv j~ L̃•N!%5STFi j $@ ṙ 2~N–n!~N–v!# r y iv j1@~N–n!221# r 2 v i j 1@~N–v!2 ṙ ~N–n!#r 2 Niv j%, ~A6j!

STFi j $epqi Nqv jp~ L̃•N!%5STFi j $@v22~N–v!2#yiv j1@~N–n!~N–v!2 ṙ #rv i j 1@ ṙ ~N–v!2v2~N–n!#rNiv j%, ~A6k!

where L̃ p5epkl yk v l .

APPENDIX B: THE EQUIVALENCE TO WILL-WISEMAN WAVEFORM

The expression for the gravitational waveform, obtained by Will and Wiseman@18# differs from our waveform expression
at the 1.5PN and the 2PN orders. We give below the difference in the waveform expressions at these orders and show that the
two polarization statesh1 andh3 of the difference are zero at 1.5PN and 2PN orders.

$~hkm
TT!BDI

~1.5!2~hkm
TT!WW

~1.5!%5
1

3c3 Pi jkm

dm

m

Gm

r
~122h!$3~N–n!3ṙv i j 2~N–v!~N–n!2@v i j 16ṙ n~ iv j )#

1~N–n!~N–v!2 @2n~ iv j )13 ṙ ni j #2~N–v!3ni j 13 ~N–n! ṙ @v2ni j 1v i j 22ṙn(ivj)#

1~N–v!@v2ni j 1v i j 22ṙ n( iv j )#%, ~B1a!

$~hkm
TT!BDI

~2! 2~hkm
TT!WW

~2! %5
1

15c4 Pi jkm

Gm

r H ~125h15h2!F12~N–v!4ni j 23 ~N–n!4S 3v2215ṙ 21
Gm

r D v i j 16~N–n!3~N–v!

3S F3v2215ṙ 21
Gm

r Gn~ iv j )29ṙv i j D26~N–n!~N–v!3~9ṙ ni j 14n~ iv j )!23~N–n!2~N–v!2S F3v2

215ṙ 21
Gm

r Gni j 236ṙ n~ iv j )24v i j D G2~N–v!2F S ~512185h155h2!v22~1172375h215h2! ṙ 2

2~392125h25h2!
Gm

r Dni j 224~125h15h2! ṙ n~ iv j )112~125h15h2!v i j G12~N–v!~N–n!

3F27~125h15h2! ṙ v2 ni j 1S ~392125h25 h2!S v22
Gm

r D2~1712645h1255h2! ṙ 2Dn~ iv j )

127~125h15h2!ṙvij G2~N–n!2F ~125h15h2!S 29 v4145ṙ 2v223 v2
Gm

r D ~ni j 22 ṙ n~ iv j )!1S ~30

280h250h2!v22~722150h2240h2! ṙ 22~422140h110h2!
Gm

r D v i j G
2F S ~392125h25h2!S Gm

r
2 v2D1~1172375h215h2! ṙ 2D ~v2ni j 22ṙ n~ iv j )1v i j !G J . ~B1b!
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The two independent polarization states of the gravitational

wave h1 and h3 are given byh15 1
2 (pi pj2qi qj ) hi j

TT

and h35 1
2 (pi qj1pj qi) hi j

TT , wherep and q are the two
polarization vectors, forming along withN an orthogonal
triad @16,67,18#. Note that there is no need to apply the TT
projection before contracting onp andq. Consequently, we
write the difference in the waveform at the 1.5PN and the
2PN orders as

$~hi j
TT!WW2~hi j

TT!BDI%5z1v i j 1z2ni j 1z3n( iv j ) . ~B2!

The polarization statesh1 andh3 , for Eqs.~B2! are given
by

h15
1

2
~pi pj2qi qj ! ~z1v i j 1z2ni j 1z3n~ iv j !

5
z1

2
@~p–v!22~q–v!2#1

z2

2
@~p–n!22~q–n!2#

1
z3

2
@~p–n!~p–v!2~q–n!~q–v!#, ~B3a!

h35
1

2
~piqj1pjqi !(z1v i j 1z2ni j 1z3n( iv j ))

5z1~p–v!~q–v!1z2 ~p–n!~q–n!

1
z3

2
@~p–n!~q–v!1~p–v! ~q–n!#. ~B3b!

For the explicit computation of Eqs.~B3!, we use the
standard convention adopted in@16,67,18#, which
gives p5(0,1,0), q5(2cosi,0,sini), N5(sini,0,cosi),
n5(cosf,sinf,0), and v5( ṙ cosf2r v sinf, ṙ sinf
1r v cosf, 0), wheren andv are the unit separation vector,
and the velocity vector respectively,f is the orbital phase
angle, such that the orbital angular velocityv5df/dt, andi
is the inclination angle of the source.

A straightforward but lengthy computation shows thath1

and h3 , given by Eqs.~B3! vanish, both at the 1.5PN and
the 2PN orders. This establishes the equivalence of our
waveform expression, Eqs.~5.3! and~5.4! with the WW one
given by Eqs.~6.10! and ~6.11! of @18#.
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