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Decoherence due to the Geometric Phase in a “Welcher-Weg” Experiment
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We describe a new version of the well-known gedanken experiments to determine which of the two
paths a particle took in a two-beam interference experiment. In this version the presence of a geometric
phase can be deduced from the requirement that the interference pattern must disappear as a result of

the welcher-weg (which path) information.

PACS numbers: 42.25.Hz, 03.65.Bz

Ever since the advent of quantum mechanics in the ear-
ly part of this century, one of the problems that has intri-
gued physicists is duality, i.e., wave and particle behavior
exhibited by both matter as well as light. Young’s two-
slit interference experiment has, from the very beginning,
provided the standard framework for discussion of the is-
sues arising out of wave-particle duality. The famous
Bohr-Einstein debate [1] surrounding the recoiling slit
experiment proposed by Einstein [2] made it clear that it
is impossible to determine which of the two slits the parti-
cles went through without destroying the wave aspect,
namely, the interference pattern. More recent work on
the two-slit interference involving photon interference [3],
neutron interference [4,5], and atom interference [6-8]
has brought the issue into the realm of real experiments
and has focused on the question of partial determination
of the path of the particle leaving the interference pattern
largely unaffected. It is generally agreed that a complete
determination of the path of the particles must result in
destruction of the interference pattern. However, there is
an unsettled question of the mechanism of disappearance
of the interference pattern. For example, it is claimed
[7,8] that in the experiment of Scully and Walther [7]
the interference does not disappear due to a randomiza-
tion of the phase of the interfering waves as envisaged in
the original arguments of Bohr and Einstein.

Another important development in physics in recent
years has been the discovery of the geometric phase in the
context of adiabatic evolution of quantum systems by
Berry [9], that of its more general counterpart in nonadi-
abatic evolution by Aharonov and Anandan [10], and the
discovery of an anticipation of the geometric phase by
Pancharatnam [11] in his work on polarization transfor-
mations of light. The relevance of Pancharatnam’s work
to phase changes in general evolutions in quantum
mechanics including noncyclic and nonunitary evolutions
has been pointed out by Samuel and the present author
[12]. The phase predicted by Pancharatnam has been the
subject of several experimental studies [13-16] and is by
now a well-accepted idea. More recently, it was found
[17] that phase changes occurring in very simple experi-
mental situations in optics, e.g., linearly polarized light
passing through a rotating birefringent plate, present, at
first sight, paradoxes that disappear when the geometric
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phase as defined by Aharonov and Anandan [10] is ac-
counted for.

In this Letter we present an interesting link between
the above two fields in the form of a new version of
Einstein’s gedanken experiment. We start with the hy-
pothesis that destruction of the interference as a result of
the welcher-weg information must be due to a randomi-
zation of the phase of the interfering waves and we look
for the source of the random phase. In the proposed ex-
periment we find this to be a geometric phase. En-
couraged by this we analyze the proposal of Ref. [7] and
find that in that scheme too there must be a random
phase introduced as a result of the welcher-weg informa-
tion and that it can be looked upon as a geometric phase.

Consider an interference experiment in which a right-
hand circularly polarized beam of light is split by a beam
splitter into two beams each of which pass through a
half-wave plate (HWP) and then recombine as shown in
Fig. 1, the beams being routed through ideal metal-
mirror reflections. In passing through a HWP each pho-
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FIG. 1. Schematic diagram of the proposed gedanken experi-
ment. |R) and |L) represent right-hand and left-hand circular-
ly polarized states of a monochromatic light beam. H;(81) and
Hu(Bu) are half-wave plates with their principal axes oriented
at angles By and B with the x direction which lies normal to the
plane of the interferometer. Dy and Dy are detectors capable of
detecting a change in the angular momentum of Hy,Hy.

© 1992 The American Physical Society



VOLUME 69, NUMBER 26

PHYSICAL REVIEW LETTERS

28 DECEMBER 1992

ton reverses its helicity, i.e., its spin angular momentum
reverses sign and in the process imparts an angular
momentum equal to 2A to the HWP. Such angular
momentum transfers have been experimentally observed
by Beth [18]. Let us assume that to each HWP is at-
tached a device Dy or Dy that can detect an angular im-
pulse imparted to it by a passing photon. If this angular
momentum change could be unambiguously determined
one would have the required welcher-weg information.
The interference pattern must then disappear. What
causes the random phase that does this? The answer is
essentially the same as that in the Bohr-Einstein debate.
For an unambiguous determination of an angular
momentum change equal to 2A, one must first prepare
the HWPs in states in which their angular momenta are
defined to an accuracy much better than 2#, i.e., more or
less in an eigenstate of L,, where L, is the component of
the angular momentum of the HWP in the direction of
the beam axis which is taken to be along Z. The uncer-
tainty relation between L, and the angular orientation ¢
of the HWP about the beam axis, AL, A¢ > h/2 then re-
quires that Ag>> ¥, i.e., be completely uncertain [19,20].
How does an uncertain ¢ result in a random phase of
the interfering beams? It is a straightforward deduction
from the results of several experiments already reported
in literature [14,21] that in an arrangement shown in Fig.
1, each of the beams has a phase proportional to the an-
gle of orientation of the HWP and is the Pancharatnam
phase. We have also explicitly verified experimentally
that in an arrangement equivalent to that shown in Fig. 3,
a rotation of any of the two HWPs by an angle S results
in a change in the phase difference between the two
beams by *28. Figure 2 shows the tracks followed by
the polarization state of the two beams on the Poincaré
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FIG. 2. The polarization states of beams I and II trace the
geodesic arcs |R)A1|L) and |R)Au|L) on the Poincaré sphere
while passing through the half-wave plates, and the arc
|LYM|R) while reflecting off the mirror M or HSM2, thus pick-
ing up geometric phases equal to aj or an, where a; =28; —90°.

sphere which is the projective Hilbert space for any two-
state system, for example, light polarization or a spin- ¥
particle. Let the x axis be chosen to be the direction nor-
mal to the plane of the interferometer. Then, in passing
through the HWPs the state of the beams I and II follow
the geodesic arcs |R)A|L) and |R)Ayl|L), respectively,
where a; =2B; —90°, i =I,11. The angles B; and By are
the angles made by the fast axes of the HWPs with the x
axis. Since M1 and HSM2, assumed to be ideal metal
mirrors, can each be replaced with a HWP with its fast
axis along X as far as the polarization transformations are
concerned [22], both beams return to the state |R) along
the geodesic |L)M|R). Each beam picks up a phase
equal to half the solid angle subtended by the area en-
closed by the closed circuit traced out by its polarization
state on the Poincaré sphere. Any change in the relative
orientation of the two HWPs therefore results in a phase
change between the two beams equal to half the solid an-
gle subtended by the change in area enclosed by the arcs
|[RYAi|L) and |R)Ay|L).

We also note that the mirror reflection bringing the
beams back to the state |R) is not essential. To get a
geometric phase difference it is enough that the two
beams traverse different arcs in going from |R) to |L). In
principle, therefore, an experiment similar to Einstein’s
gedanken experiment shown in Fig. 3 would do as well,
where any change in the relative orientation between the
two HWPs would result in a proportional fringe shift. A
completely uncertain orientation resulting from prepara-
tion of the HWPs in angular momentum eigenstates,
necessary for detection of an angular momentum change
of 2A due to passage of the photons would therefore re-
sult in a completely random phase difference between the
two waves and therefore in the disappearance of the in-
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FIG. 3. An experiment equivalent to that of Fig. 1 shows the
similarity in principle of the proposed experiment with
Einstein’s gedanken experiment. Photons from a monochromat-
ic source pass through a circular polarizer C and then have a
choice of one of two classical paths to the screen, i.e., via Hi-S;
or Hy-Si, where Hi,Hyp are HWPs and Sy, Sy are slits. Dy, Dy
are angular momentum detectors that can detect any angular
momentum transfer to a HWP by a passing circularly polarized
photon.
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terference pattern.

We next show by a two-step argument that there is no
difference in principle between the gedanken experiments
of Einstein [2] and the proposed experiments of Scully
and Walther [7] in which the welcher-weg information is
sought to be obtained by detection of a photon emitted by
a passing atom in a maser cavity; in both cases the disap-
pearance of the interference is due to a randomization of
the phase as a result of the welcher-weg information. (1)
Einstein’s experiment and the one proposed in this paper
are exactly similar except for the replacement of the con-
jugate variables x and p in Einstein’s proposal with the
variables ¢ and L, in the present one. (2) The experi-
ment of Scully and Walther is exactly similar to our pro-
posed experiment except for the replacement of the con-
jugate variables L, ¢ in the latter with the pair /V,0 in the
former, where /N stands for the number of energy quanta
and 6 for the phase of the oscillating cavity mode. The
quantum mechanics of the variables L, and ¢ for a rigid
rotator is similar to the quantum mechanics of the vari-
ables IV and 6 for a harmonic oscillator which is an elec-
tromagnetic cavity mode [20]. The precise correspon-
dence is as follows: (i) The angular momentum of the ro-
tator corresponds to the energy of the oscillator; (ii) the
orientation ¢ of the rotator corresponds to the phase 6 of
the oscillating cavity mode; and (iii) the number of angu-
lar momentum quanta in the rotator corresponds to the
number of energy quanta in the oscillator. The N-6 un-
certainty relation ANA@> § must therefore play the
same part in the Scully-Walther experiment as the L,-¢
uncertainty relation AL, A¢ > h/2 in the present one. It
follows, therefore, that associated with a phase difference
0, — 6, between the two oscillating cavities there must ex-
ist a phase difference y between the wave functions of the
two interfering atom beams. In fact this is clearly
brought out in the analysis of Ref. [6]. When the cavities
are prepared in number states, i.e., in eigenstates of /V,
both 6, and 6, are completely random [23], and hence
6, — 6, and consequently y are completely random. The
correlation between 6; — 6, and y has also been observed
experimentally in the “‘quantum beat’ experiments of Ba-
durek, Rauch, and Tuppinger [4] where a small frequen-
cy difference between the radio frequency coils in the two
beams (a slowly varying phase difference) resulted in the
quantum beating, i.e., a slowly time-varying phase
difference between the interfering neutron beams. This
has been interpreted by Wagh and Rakhecha [24] as a
time-varying geometric phase.

To sum up, there is no difference in principle between
the three experiments discussed in this paper; the
difference is only in the pair of conjugate variables of the
measuring apparatus used to obtain the welcher-weg in-
formation. In fact in any other scheme, if a variable A4 is
used to obtain the path information, the conjugate vari-
able B which is related to 4 by an uncertainty relation
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must be correlated with the phase of the interfering
waves, and this principle can be used to identify the phase
if it is not already obvious.

I thank Professor D. K. Rai for a comment that trig-
gered a chain of thought eventually leading to this paper.
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