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Massless scalar waves in the Witten bubble spacetime are studied. The timelike and angular parts
of the separated Klein-Gordon equation are written in terms of hyperbolic harmonics characterized
by the generalized frequency w. The radial equation is cast into the Schrodinger form. The above
mathematical formulation is applied to study the scattering problem, the bound states, and the cor-
responding stability criteria. The results confirm the concept of a bubble wall as a perfectly

reflecting expanding sphere.

I. INTRODUCTION

The ground state of the five-dimensional Kaluza-Klein
theory is assumed to be M 4% S, the product of four-
dimensional Minkowski space and a circle S of charac-
teristic radius R ~mj !, where mp is the Planck mass.
Witten! studied whether or not a ground state of this
form is a reasonable candidate of such a theory. He con-
cluded that M*X S! is unstable against a process of semi-
classical barrier penetration. The consequence of this
semiclassical decay process is a classical, time-dependent,
source-free solution of the Kaluza-Klein field equations.
This results in an expanding bubble with unusual proper-
ties.

In certain nonlinear field theories, the expansion of a
bubble corresponds to the decay of a “false” vacuum into
a “true” vacuum. However, rather than containing the
“true” vacuum, the Witten bubble has no interior at all.
The spacetime is terminated at its wall which is a perfect-
ly reflecting, expanding sphere. The expansion rate in-
creases with time.

Recently, the nature of timelike and null geodesics in
this spacetime has been studied by Brill and Matlin.? In
this paper, we investigate the behavior of scalar waves in
the background of the Witten bubble geometry.

As in the case of the geodesics, the study of the behav-
ior of scalar waves also probes into the geometry of the
spacetime. The scattering phenomenon throws light on
the nature of the bubble as well as on its effect on the sur-
rounding spacetime. Further it provides us with valuable
information about the bound states and the stability of
the spacetime. Also, the investigation of scalar waves in
an exact solution such as the Witten metric offers insight
into the propagation of waves in strong gravitational
fields.

The present paper is organized as follows. In Sec. II,
we describe the main features of the Witten bubble
metric. In Sec. III, the Klein-Gordon equation has been
separated, and the different functions appearing in the
solution have been discussed. The formalism developed
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in Sec. III is employed in Sec. IV to study the scattering
of scalar waves and the bound states. The higher-mode
solutions are discussed in Sec. V. Section VI provides a
summary of the salient results. We also give an alterna-
tive form of solutions of 7, and radial equation in Appen-
dix A, while Appendix B discusses the significance of a
coordinate transformation generally employed in scatter-
ing problems.

II. THE WITTEN BUBBLE METRIC

The four-dimensional Minkowskian subspace of the
ground state of five-dimensional Kaluza-Klein theory is
being described here in terms of ‘“‘spherical Rindler”
coordinates. A spherical array of uniformly accelerated
observers uses such type of ‘“hyperbolic”” coordinates.
These are related to the Minkowskian coordinates in the
following way:

t =rsinh7t ,

x!=r coshrcos¢sinb ,

(2.1
x2=r coshrsingsiné ,

x3=r coshrcosf .

Here, we are using these coordinates to make the vacu-
um metric comparable with the metric of the semiclassi-
cal vacuum decay which starts at t =0. Therefore, the
five-dimensional Kaluza-Klein vacuum metric can be
written as

ds*=—r3dr*+dr?
+r2cosh?*r(d6?+sin’0d ¢?)+dx? 2.2)

where y is the coordinate of the compactified fifth dimen-
sion. This metric is valid for 7<0. For 7> 0, the decay
state of the Kaluza-Klein vacuum can be described by the
metric
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ds?=—ridr*+ — dr?

’.2

+r2cosh?r(d 62 +sin?0 d $?)

+ [1-=

r

ax*, 2.3)

where r has now the range R <r < . Therefore, as a re-
sult of this decay, a microscopic hole of radius R will be
spontaneously formed in space. Like the bubble wall in
conventional vacuum decay, this hole will start expand-
ing to infinity with a uniform acceleration. The bubble
surface is a two-sphere of area 4mR %cosh?r. So at any
time its radius is 7 (t)=(R2+12)!/2. For very large r, the
metric (2.3) asymptotically approaches the M*XS!
spacetime described by (2.2).

III. THE KLEIN-GORDON EQUATION
The Klein-Gordon equation for a massive scalar field is
written as
1
Vg

where M is the mass.
The metric (2.3) is independent of the fifth coordinate

(V—g —gg"d ), -M?*®=0, (3.1)

J

d , @
= — 4 —
coshz‘r 3, coshr 3, V

x and, therefore, there is a Killing symmetry in the fifth
dimension. The solution of the Klein-Gordon equation
is, therefore, found to be

d=R(nA ""(f,9¢)ei'""‘, (3.2)

S=R(nT! (r)¥Y" (6,8)e" (3.3)

where Y,’"(9,¢) are the spherical harmonics. Other func-
tions appearing in this solution will be discussed in the
following subsections. Scalar waves for which the fifth-
dimensional component vanishes (m;=0) represent the
propagation of ordinary scalar waves in such a spacetime.
The case of nonzero m, cannot readily be interpreted in
terms of realistic scalar waves.” In this work, we shall
consider m; =0 throughout.

A. T equation

The wave field represented by the solution (3.2) does
not oscillate in a simple harmonic way, but in a more
complicated way as given by the hyperbolic harmonics
H!™(7,0,8). These hyperbolic harmonics are character-
1zed by the generalized frequency o, which labels the rep-
resentation of the Lorentz group SO(3,1). These are actu-
ally the eigenfunctions of the D’Alembertian on the unit
timelike hyperboloid:

o | HIN=(+DH!". (3.4)

iw

These form a complete orthonormal set with respect to the Lorentz-invariant volume on the timelike hyperboloid:

f f”f H™(7,0,)H *L™ (7,6,¢)cosh’rsinf d0dd d =80 — " )88, - (3.5)

A detailed construction of these hyperbolic harmonics has been discussed by Gerlach* in the Appendix of his paper.
Some inadvertent errors seem to have crept into his constructions, probably stemming from the original sources used.
Nevertheless, these errors do not affect the results of that paper. In our work, we shall use explicit solutions, thereby

avoiding any possible ambiguities.

Also,
H{72(r,6,6)=T |, (7)Y["(6,8) (3.6)
where T'! (1) satisfies the equation
— L4 o D g (2 )T () (3.7)
cosh’r dT dT  cosh’r
Introducing the function
a! (r)y=coshrT! (1), (3.8)
we can write Eq. (3.7) in the Schrodinger form
2
- _IUHD Vi y=wta () . (3.9)
dr cosh’r

In this section, we are confining ourselves only to the lowest mode (I =0).

discussed in Sec. V.
The lowest-mode solution is given by

The higher-mode solutions (/ > 0) will be

(3.10)
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where 1/V47 factor has been taken to normalize the function:

fo“’ 7% (na o (rdr=8w—0') .

Therefore,

1 eiwr

ﬁ()m ,9, = —
iv(7,6,4) V47 coshr

eime

An alternative solution for 7 equation (3.7) is discussed in Appendix A.

B. Radial equation

The radial function % (r) satisfies the equation

2
-2
;

R2

r2

3

r —M?

»r

1- 11—

- R?
R, —
, 2

1
3

As discussed in the beginning of this section, we shall
take m; =0. Then for massless (M =0) scalar waves, Eq.
(3.13) turns out to be

%[r(r2~R2)ﬁ’,]’,+(w2+l)R~ =0. (3.14)
Now, we make a change of variable such that
& (2R (3.15)
dx
or
x =arccosh | — (3.16)

Asr—R, x—0. Asr— + «, x goes to both + . Here,
we are choosing the limit to be x — + «. Use of such a
coordinate transformation has a natural significance
which we shall discuss in Appendix B.

After this transformation, Eq. (3.14) becomes

R oxHf(NR A+ +1DR=0, (3.17)
where
_ r (rZ_RZ)I/Z
fin= R ; . (3.18)

The radial equation is still not free of first-derivative
terms. Now, if we define

_ V(r)
A= =g

then it brings Eq. (3.17) to the form of a Schrddinger
equation:

(3.19)

U, + |0+ — '2 V=0, (3.20)

” sinh“2x

with an effective potential
Vg=——1 (3.21)

sinh?2x

This Schrodinger equation has a very simple effective po-
tential whose behavior can be readily visualized. Qualita-
tive features of the wave behavior can also be easily dis-

R—

(3.11)
(3.12)
2 2]
m? R +2F1 1—57]7f=0. (3.13)
r r

[
cussed. To solve this equation, let us introduce a new
variable

y =—sinh?2x , (3.22)
so that Eq. (3.20) becomes
y(1=p)¥ + L=y + 1 _ e U=0. (3.23)
WY 2 2y 16y 16

Then we define a new function

W=y 4y (3.24)
which now satisfies the equation
2
~ ~ o+l =
y=—ypW , +(1—3y)W  — 16 W=0. (3.25)

This is in the form of a hypergeometric equation.
Therefore, the analytical solutions of this equation near
y =0 could be found in terms of hypergeometric series.
These are

W,=F(a,b;l;y) (3.26)
and

W,=InyF(a,b;1;p)+ S, (a()’:(:z)"y"S(n) (3.27)
for |y| <1, where .

a=Hl+iw),

b=1(1—iw),

F(a,b;1;y) i (a)"(bz)"y",

n=o (n!)
(a), = I'(a +n)
" Ma) ’

S(n)=yla +n)—la)+yY(b +n)
—Y(b)—2¢¥(n +1)+24(1) .

¥ is the logarithmic derivative of the gamma function.
Using (3.24), we can now get the solutions of the
Schrodinger equation (3.20) to be

¥,=y!*F(a,b;1;y), (3.28)
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FIG. 1. The solution ¥,(x) for different frequencies w.

- 14 = (a),(b),
¥,=y InyF(a,b;1l;y)+ Zv—m—

y"S(n)
n=1 (

(3.29)

Both these solutions go to zero as y —0.

We have also solved Eq. (3.20) numerically and plotted
the solutions in Fig. 1 for different frequencies w. We ob-
serve that starting from x =0, the solution rises very rap-
idly to a maximum value and then starts oscillating like a
cosine wave. As o increases, the influence of the space-
time on the waves reduces and the solution starts oscillat-
ing very close to the bubble wall.

_ However, if we look at the corresponding solutions for
A equation by using Eq. (3.19),

#,= I;IF(a,b;l;y), (3.30)
~ i o (a) (b)
Ry=L lnpF(a,b; 1)+ 3~y (n) | |
R n=1 (n!)Z
(3.31)
We observe that, at r =R,
_ 1+i

whereas #,— — .

Therefore, as far as the Schrodinger equation is con-
cerned, the second solution behaves properly in that
coordinates system. But when we consider the actual ra-
dial equation, the corresponding solution blows up at
r=R. We are, therefore, discarding the second solution
throughout our further calculations.

From Eq. (3.20), we can readily obtain the asymptotic
behavior of its solution as x — oo :

Vv ~

x— + o

Ae ~'0X4 Be tiex | (3.33)
where A4 and B are arbitrary constants.
(3.19), we get

- —lwx +iwx

o~ Ae + Be ’

r—+ o r

Then, using

(3.34)

since as r — + o, (rV'r2—R%)!2r. We shall now ap-
ply these considerations to the wave scattering by the
bubble.

IV. SCATTERING AND BOUND STATES
The total scalar wave solution in its lowest mode can
now be written in the asymptotic limit to be
e imcSe ot
V'arr coshr

X ( Ae ~i9X4 Be Tiox) 4.1)

B(r—+), ;==

The factor (7 coshr) in the denominator ensures that
the total flux of energy passing through a unit solid angle
d Q does not depend on r or 7 for very large .

What is the relation between 4 and B? The answer
follows immediately, if we just consider the behavior of
the differential equation (3.17). The hypergeometric
series of Eq. (3.30) is always real, since c is just unity and
a and b are complex conjugates of each other. Now, if we
use initial condition (3.32) in (3.17) and study the evolu-
tion of 77, we shall see that the real and imaginary parts
of this equation will evolve independently. However, at
any point, both these parts will be equal. Considering
this fact and matching the solution with (3.34) in the
asymptotic limit, one can show by a very simple calcula-
tion that this is a case which corresponds to | 4| =|B|.

The actual expressions for 4 and B can be obtained by
analytically extending the solution (3.28) to infinitely
large negative values of the argument

y = —sinh?2x — —2" %% . (4.2)
Then the solution is
X}-ixzzﬂ/zex F(I;()Ilz‘(_la—)a) 2a, —4ax
pLab)_ 22be~4bx‘
[ | =2 |gitor2mm2
AT 3 e
r Z—i% r Z—i%
|42 |e—ite/2in2
+ 2 e tiox (4.3)
r %+i% r %+i%

Matching with (3.33), we get expressions for 4 and B.
Since I'(Z)=T'(z), we can easily see that 4 and B are
complex conjugates of each other and, therefore,
| 4]=|BI.

From the foregoing discussion, we see that only one of
the two independent solutions is acceptable. This solu-
tion is well behaved at infinity and consists of incoming
and reflected wave components with equal amplitudes.
Further, this solution goes to zero at »r =R. Since the
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other solution is not well behaved at r =R, there is no
scope for superposition of the two solutions, thereby ob-
taining other boundary conditions, e.g., standing waves
that do not go to zero at r =R. On the other hand, the
boundary conditions that have naturally arisen fit in well
with the notion of a bubble surface enclosing a region
r <R that does not correspond to points in physical
space. One expects the incoming wave to be totally
reflected from the bubble surface. This phenomenon is,
in fact, happening here. We may also note that by a simi-
lar argument, one can rule out quasinormal modes of the
bubble, since waves purely incoming at » =R and purely
outgoing at r— o cannot be obtained. This indicates
that the bubble surface acts as a perfectly reflecting rigid
barrier.

To investigate the bound states of this problem, we
have to consider imaginary frequencies. Let us replace
io—w,. Then, for 7 equation (3.9), a discrete set of
square-integrable wave functions can be obtained as
bound states. These have been constructed in detail in
Ref. 4. To obtain bound states in the radial equation
(3.20), we see that the parameters a and b in solution
(3.28) have now become real. Then, in the asymptotic ex-
pressions (4.;3), the first term behaves as e " and the
second as e "". Bound states are possible, only if the

. +o, x .

coefficient of e " in the second term vanishes. Howev-
er, all " functions in this coefficient have a positive real
argument. Therefore, no I" function in the denominator
can ever blow up and make the factor vanish. Conse-
quently, no bound state is possible. Nevertheless, we
should point out here that if one performs the following
integration

i) 0°° VE —V qdx
for E =0 in this case, one obtains

E
o sinh2x

dx =llntanhx|f =+ o .

Following Ref. 5, this means the existence of an infinite
number of bound states. However, our explicit calcula-
tion has shown that there is no bound state at all. This
apparent contradiction is due to our discard of solution
(3.29), though it was behaving well throughout the range
of variable Y in Schrodinger’s equation (3.20). Had we
considered both solutions, we would have obtained an
infinite number of bound states. But those are not realis-
tic as far as our problem is concerned.

Now, since the same w appears in both radial and 7
equations, the nonexistence of bound states also confirms
that modes exponentially growing with 7 do not exist.
This shows the mode stability of the bubble spacetime
against scalar perturbations. Further, since the scatter-
ing modes form a complete set, the bubble spacetime is
stable with respect to any arbitrary scalar perturbations.

V. HIGHER-MODE (! >0) SOLUTIONS

As we have seen in Sec. III A, the lowest-mode (/ =0)
solution given in Eq. (3.10) is &-function normalized.
Now, to study higher-mode solutions, following Ref. 4,
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we can introduce the raising and lowering operators by
factorization method in Eq. (3.9):

L' =ltanhrFdr . (5.1)

Then one can write & ! () as an eigenfunction of L/, L",
with the eigenvalue (0>+12). Now the general eigenfunc-
tion can be written in its normalized form to be

ioT

~1 — 2442 2 2\1—1/27 1 1€
i (=" +1%) - (0*+1°) L, L — .
[ ] + + ‘/477_
(5.2)
Also,
7!t =l +U+1217 V2L gl (7). (5.3)
For [ =1, we obtain, from Eq. (5.2),
! (r=(e?*+1)" 172 tanhr——d— eiw_r
te dr | Viar
—i0,(r) e'@T
=A(1)e ! — , (5.4)
! V4
where
) , 172
A4, (r)= | @ T tanhT (5.5)
o +1
and
0,(r)=arctan (5.6)

tanhr

As T— o, A,(1)—1, 0,(1)—>arctanw. One can con-
tinue this process and see that any higher-mode solution
can always be written in the from

—i6,(r) e®7

I -
u; (1)=A)(T)e Vo (5.7)
Therefore, any higher-mode solution is nothing but a
phase-modulated wave function of the lowest-mode solu-
tion. However, this is a transient case of phase modula-
tion, since, in every case, 6, very rapidly approaches a
constant value, as 7 increases. The amplitude of this
modulating wave is also time dependent. However, as 7
increases, A4;(7) also approaches the value / very rapidly.
So, for a sufficiently large value of 7, any higher-mode
solution will look like

ei(wT—OC)

I _
ul (r - , 5.8
fw(7) Vi 58

where 6, is a constant.

For the sake of completeness, we are writing below the
explicit expressions for A4; and 6, for a few other higher-
mode solutions.

[=2:

4= o*+(3 tanh®>r+2)w?+(9 tanh*r— 6 tanh?r+1)
2 o'+ 50 +4

tan6. — 3w tanht
2 3tanhir—(1+0?)
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[=3: 43

numerator =’ + 0*(8 + 6 tanh?7) + ©?*(45 tanh*r— 12 tanh?*7+ 16)

+(225 tanh®r—270 tanh*r + 81 tanh?7) ,

denominator =w®+ 14w*+490*+ 36 ,

150 tanh?*r— 40 — ©°

15 tanh3r— (6> +9)tanh?r

tan@, =

VI. CONCLUDING REMARKS

In the preceding sections we have developed the
mathematical formalism for and studied the behavior of
scalar field in the Witten bubble spacetime. We have
written the eigenfunctions of the temporal equation as
hyperbolic harmonics which manifest wave behavior in
all of its modes. By choosing the null coordinate system,
we could transform the radial equation into a very simple
Schrodinger form. A general basis of this operation,
which can be used in similar problems in curved space-
time, is also discussed in the Appendix. Studying the
scattering problem, we have observed that our results are
consistent with the concept of bubble as a perfectly
reflecting wall. At large enough distance, we could get
both incoming and outgoing waves with the same ampli-
tude, thus giving the value of the reflection coefficient to
be unity. On the other hand near the bubble, the wave
behavior gets distorted. The higher the frequency the
lower is the distortion produced by spacetime. A high-
frequency wave starts manifesting its wave behavior very
near to the bubble wall.

The study of bound states confirms the stability of the
spacetime against arbitrary scalar perturbations. For a
complete stability analysis of such a spacetime, the study
of electromagnetic and gravitational perturbations is also
necessary. Our study may be able to project a clearer
concept of some inherent aspects of the Witten bubble
and lead to further studies related to such a spacetime.
The mathematical formalism developed by us may be use-
ful in similar problems in other curved spacetimes.
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APPENDIX A:
ALTERNATIVE FORM OF SOLUTIONS

Here, we are presenting alternative forms of solutions
of both radial and 7 equations, obtained by different pro-
cedures. Since these solutions are not convenient for for-
mulating scattering and other problems in this spacetime,
we have not used them in our work. However, for the
sake of completeness and for possible use elsewhere, we
are describing these here.

T equation

The 7 part of the separated Klein-Gordon equation,

which we shall denote here as T, instead of T !, satisfies
Eq. 3.7).
Let us do the coordinate transformation
T—1 % -7 (A1)

This is equivalent to the Euclidean continuation of Eq.
(3.8).
Then introducing the variable

p =cost’ (A2)
we can write Eq. (3.7) as
2FE 7 E
(1-p»2 T, 3l —iﬁilz—) T*=0, (A3
dp* dp 1—p

where by ;T E we represent the Euclidean continuation of
function 7. Also,

a=—o'—1. (A4)
Defining
Z:(l_pZ)“l/ZTE’ (AS)
we get
25 ~
<1—p2)d f—p(21+3)£+[K(K+2)—l(l+2)]2=0,
dp dp
(A6)
where we have chosen
a=K(K +2). (A7)
Equation (A6) can now be written as
d*z dz
1—p2)—5 —pQu+1) == +AA+2u)z=
(1—p )dpz p(2u )dp (A+2u)z=0 (A8)
by defining
u=Il+1, A=K —1I. (A9)

This is the standard Gegenbauer equation, which has
two solutions expressed in terms of hypergeometric
series:
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Ci(py=—LOBEN) o

1 1—p
—_— + . +__.
T+ D) - | ThA T2t o

20 2

Dt(py=2- 1+ LT Qu+h) A

C(p+A+1)

Therefore, using (AS5), we get two solutions for Eq. (A3):
T E=(sin7")'C¥(cos7') ,

T £=(sin7")'D¥(cost’) .

/,H-%?»,/.H“?%‘%;,u-i—}d— 1;p?

(A10)

. (A11)

(A12)
(A13)

Performing the reverse transformation of Eq. (A1), or equivalently, continuing back to the Minkowski solutions, we ob-

tain
T,=(cosh7)'C&(—isinh7) ,

T,=(coshr)'D¥(—isinh7) .

Radial equation

We can get a Frobenius series solution of Eq. (3.14), if we assume it first to be of the form

R~(r—R)" > a,(r—R)".
n=0

Then, substituting this in Eq. (3.15), we obtain the equation

ala—1)z°7* 3 a,z"+20z° 'Y na,z" "'+z*3 n(n —1)a,z" ?
0 1 2

3z | 5z2 | 2773
+ |1+ ==+
2R 4R? 8R°

where z=r —R.

Equating the coefficients of different powers of Z, we
obtain =0 and can determine different a,, so that the
solution turns out to be

2
7 _ s P
71’1—(10 1 2R (r R)
4 2
@b dI gy ... (A17)
16R

A second solution can be found to be of the form
R,=In(r —R)Y a,(r =R+ b,(r—R)", (A18)
0 0
where a,,b, are constants to be determined from Eq.
(A15). The first solution behaves properly throughout
the range of the variable r, whereas the second solution
blows up at » =R.

APPENDIX B

Coordinate transformations such as Eq. (3.15) are
widely used in many situations both in flat and curved
spacetimes to bring the radial equation to the
Schrodinger form, e.g., the “tortoise” coordinates in the

o
az® Y a,z"+z°%"
0

(A14)

(A15)
oo _ 6()2+1 ) z n *loc
> na,z" U+ S|l—=5 |2 '3a,z"=0,
= 2R 4 2R &

(A16)

Schwarzschild spacetime. However, these were con-
sidered to be just some mathematical operation. Their
actual significance does not seem to have been discussed
in the literature. Here, we shall attempt to give a general
basis for this.

For a metric in which the Klein-Gordon equation is se-
parable and g,8,, are independent of time, one can al-
ways obtain the radial equation in Schrodinger form just
by choosing a null coordinate system.

In a static spacetime, if one solves the Klein-Gordon
equation for a massive scalar wave, one obtains the fol-
lowing eigenvalue equation, after separating out the
time-part which will be of the form e */";

—_ gooa#(‘/—_gg”"avq))‘l'goomz(l):a)zcb . (B1)
Vi—g

Now, if it is a two-dimensional metric
ds’=— A (r)dt*+B(r)dr?, (B2)

let us try to get a null-vector 7; by introducing a new
coordinate r*,

dr
dr*

i

n= |1




so that
2
m=—A+ |2 | B=0
i dr*
or
172
dr* _| B
o |4 (B3)
Then ds?= A (—dt*+dr*?) and Eq. (B1) becomes
d*® ) _ 3
*dr*z +TmAP=wd . (B4)
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Only the mass term contributes to the effective poten-
tial. For m =0, this is just a free wave solution.

In a general dimensional spacetime, if g,,, where
a#t,r is r dependent, then there will be an extra first-
derivative term in Eq. (B4). This first-derivative term can
be easily eliminated by suitably defining a new radial
function and the Schrodinger equation can be obtained.
The r dependence of g,, will actually contribute to the
effective potential of this equation.

If g, is also time dependent, the eigenvalue equation
of @ will not be of the form (B1). But one can easily see
that this will not create any problem in getting
Schrodinger form by choosing a null coordinate.
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