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Translational diffusion of fluorescent probes on a sphere:
Monte Carlo simulations, theory, and fluorescence anisotropy experiment
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Translational diffusion of fluorescent molecules on curved surfaces~micelles, vesicles, and proteins!
depolarizes the fluorescence. A Monte Carlo simulation method was developed to obtain the
fluorescence anisotropy decays for the general case of molecular dipoles tilted at an anglea to the
surface normal. The method is used to obtain fluorescence anisotropy decay due to diffusion of tilted
dipoles on a spherical surface, which matched well with the exact solution for the sphere. The
anisotropy decay is a single exponential fora50°, a double exponential fora590°, and three
exponentials for intermediate angles. The slower decay component~s! for aÞ0 arise due to the
geometric phase factor. Although the anisotropy decay equation contains three exponentials, there
are only two parameters, namelya and the rate constant,D tr /R

2, whereD tr is the translational
diffusion coefficient andR is the radius of the sphere. It is therefore possible to determine the
orientation angle and translational diffusion coefficient from the experimental fluorescence
anisotropy data. This method was applied in interpreting the fluorescence anisotropy decay of Nile
red in SDS micelles. It is necessary, however, to include two other independent mechanisms of
fluorescence depolarization for molecules intercalated in micelles. These are the wobbling dynamics
of the molecule about the molecular long axis, and the rotation of the spherical micelle as a whole.
The fitting of the fluorescence anisotropy decay to the full equation gave the tilt angle of the
molecular dipoles to be 162° and the translational diffusion coefficient to be 1.360.1310210

m2/s. © 2000 American Institute of Physics.@S0021-9606~00!51619-5#
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I. INTRODUCTION

Nanosecond and picosecond time-resolved fluoresce
and anisotropy decay measurements provide important in
mation about solvent–solute interactions and the rotatio
dynamics of the fluorophore in homogeneous media suc
liquids.1 The fluorescence techniques are widely used
complex systems such as heterogeneous and biological
dia but the interpretation of fluorescence data is not
straightforward as in liquids. For example, the fluoresce
anisotropy decay of most dye molecules in liquids is sin
exponential,1 and occasionally two exponentials.2,3 On the
other hand, the fluorescence anisotropy decay in heter
neous or biological media is multiexponential. In liquids, t
fluorescence anisotropy decay is not affected by the tran
tional diffusion of the fluorophore. On the other hand, if t
fluorophore is bound to the surface of a nanometer-size
ticle ~micelles, vesicles, and proteins!, the fluorescence is
depolarized due to the translational diffusion of the dye
the surface as well. There are numerous experimental stu
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of fluorescence dynamics of fluorophores bound to mice
~nanometer size particles!,4–8 and surface diffusion was
taken into account empirically in a few studies.6–8 The the-
oretical and experimental studies on the fluorescence an
ropy decay of dipoles diffusing on curved cylindrical su
faces have been carried out.9–11 Surprisingly, analytical
equations for the anisotropy decay are not available for o
curved surfaces, including the simple case of translatio
diffusion of fluorophores on a spherical surface.

In this work, a Monte Carlo simulation method has be
developed for obtaining fluorescence anisotropy decay du
the translational diffusion of probes on curved surfaces
three dimensions. The anisotropy decay simulated for
diffusion of oriented dipoles on a spherical surface match
well with the analytical solution obtained by solving the d
fusion equation for the same problem. The anisotropy eq
tion is a three exponential function with slower decay co
ponents when the orientation of the dipole is away from
surface normal. A theoretical approach to this problem
also presented. The applicability of the equation to exp
mental anisotropy decay of Nile red in SDS micelle has be
examined.

The problem of diffusion of probes on surfaces is impo
tant in many other areas of physical sciences such as nu
magnetic resonance studies on micelles and membranes12–14

polymer dynamics and entanglement, etc.15–18 The diffusion
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equations are necessary for understanding biological p
nomena at a molecular level where the translational diffus
of solutes bound to different surfaces directly influence
rate of metabolism or the rate at which the chemical sign
are conveyed.14 The Monte Carlo method of solving transla
tion diffusion on a curved surface described here can be
tended to any regular or irregular surfaces and will be p
ticularly useful in the case of systems that cannot be trea
analytically.

II. METHODS

A. Diffusion on closed surfaces

Diffusion of a particle in space is a classical problem19

The diffusion equation for a particle confined to a surface
three dimensions is written as

]

]t
P~x,y,z,t !5 S ]

]x

]

]y

]

]zD D̄̄S ]

]x

]

]y

]

]z

D P~x,y,z,t !, ~1!

whereP(x,y,z,t) is the probability of finding the diffusing

particle at the coordinatesx, y, z at time t. Here, D̄̄, the
diffusion coefficient, is a second rank tensor. When the s
face is uniform, as in the case of problems studied here,

replaces the tensorD̄̄ with an isotropic diffusion coefficien
D, having the unit m2/s. The above diffusion equation i
sought to be solved for a given initial condition, namely, th
the particle is located atx0 , y0 , z0 at t50, subject to appro-
priate boundary conditions to obtain the time depend
probability of finding the particle at any location on the su
face. If the surface is a closed one, as in our case, the ap
priate boundary condition is that att5`, the probability of
finding the particle at any location is equal to 1/A, whereA is
the surface area. There are three methods for solving pa
differential equations. The first and the best method is
solve exactly to obtain the mathematical equation. This
possible for regular surfaces, such as a sphere, ellipsoid,
The second method is to solve the equation by numer
methods. Numerical methods are widely used when the a
lytical solution cannot be obtained. The third method is
obtain the solution by Monte Carlo method which is ess
tially a simulation of the diffusion process itself. The la
method can, in principle, be used to solve any diffus
problem and is particularly useful in the case of complica
curved surfaces where the diffusion equation cannot be s
under a convenient coordinate system or mathematically
dious to solve.

B. Monte Carlo simulations

The main theme of the Monte Carlo simulation20 used in
this study is to mimic the diffusion of the oriented molecu
dipoles on curved three-dimensional surfaces and to ob
anisotropy decay due to depolarization on account of tra
lational diffusion. In these simulations, the molecules w
Downloaded 30 Sep 2004 to 202.54.37.75. Redistribution subject to AIP
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treated as point dipoles oriented at a particular angle w
respect to the normal to the surface of the sphere. In
section, the mathematical operations for the simulation
multiple dipoles diffusing on a spherical surface are d
scribed. This method can be easily modified to simulate
translational diffusion on other curved surfaces based on
geometry of the surface. The simulation procedure is divid
into three parts: selection of the initial distribution of th
molecular dipoles, diffusion of the dipoles on the spheri
surface, and calculation of the anisotropy function.

1. Selection of the initial distribution of the point
dipoles

Let R be the radius of the sphere on which the dipo
are diffusing andD tr be the translational diffusion coeffi
cient. Letu andf be the standard polar angles of the dipo
vector@Fig. 1~A!# andz be the axis which is coincident with
the polarization of the exciting laser pulse. The initial dist
bution of the dipoles in the excited state was selected in
following steps. A distribution of ground state dipoles ma
ing an anglea with the respective radial vectors was select
such that the distribution of the dipoles is random over
entire spherical surface and the dipole orientation is rand
for the same anglea. Then the excited state distribution o
the dipoles was obtained after ‘‘excitation by a light pulse
polarized in thez-axis, using the probability of excitation a
cos2 u. The distribution of excited state dipoles thus obtain
will be identical to that in a real experiment.

The probability of a radial vectorR̄ making an angleu
with thez-axis is proportional to sinu. This probability has to
be satisfied during the selection of random radial vectors
random number generatorran2 ~from ‘‘Numerical Recipes
in C’’ 21! is used to generate real numbers distributed u
formly between 0 to 1. From these uniform deviates,
random numbers satisfying the required probability distrib
tion, say, P(u) ~here sinu), has to be generated. For th
purpose, the ‘‘Transformation Method’’20,21 was adopted.
The method can be described briefly as follows. Letp(x)
represent the probability of the random numbers uniform
distributed between 0 and 1,

FIG. 1. ~A! The figure shows the two polar anglesu andf of a radial vector
on the surface of a sphere with radiusR in the xyz laboratory frame. The
excitation light is polarized along thez-direction. The fluorescence aniso
ropy is calculated using the intensities along the parallel and perpendic
directions with respect to the polarization of the exciting laser beam.~B!

This figure illustrates the selection of a random dipole vectorV̂ which

makes an anglea with the radial vectorR̄ with the selection of a random

normal vectorN̂. See text for details.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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8504 J. Chem. Phys., Vol. 112, No. 19, 15 May 2000 Krishna et al.
p~x!51 for 0<x<1

50 otherwise. ~2!

The conservation of probability requires

E
x52`

x

p~x!dx5E
u52`

u

P~u!du. ~3!

The above equation becomes

x5E
u50

u

P~u!du. ~4!

Therefore first a random numberx between 0 to 1 was
chosen, then the value ofu for which the area under th
probability curve from 0 tou is x times that of the total
area under the probability curve was determined. The Ca
sian coordinates of the radial vector was calculated fr
this u value and a randomly selectedf value between 0 and
2p.

The dipole oriented at an anglea with respect to the
radial vectorR̄ was obtained as follows. A random norm
unit vector N̂ perpendicular to the radial vectorR̄ was ob-
tained such thatR̄•N̂50. If (x1 ,x2 ,x3) represent the com
ponents ofR̄ on the three Cartesian axes, then the com
nents of the normal unit vectorN̂, (n1 ,n2 ,n3) has to satisfy
the two equations

x1n11x2n21x3n350 ~5!

and

n1
21n2

21n3
251. ~6!

With the unit vectorN̂5(n1 ,n2 ,n3) as the axis of rotation
the radial vectorR̄ is rotated through the anglea to obtain a
new vectorV̄ that is oriented at the anglea with the radial
vector @Fig. 1~B!#. The rotation was done using the thre
dimensional rotation matrixDN̂(a) which is given in Sec.
II B 2. V̂ is the unit vector along the dipole vectorV̄.

In selecting the normal unit vectorN̂5(n1 ,n2 ,n3) using
Eqs. ~5! and ~6!, random numbers were used such that
selected normal unit vectors are randomly distributed in
e

Downloaded 30 Sep 2004 to 202.54.37.75. Redistribution subject to AIP
e-

-

e
e

plane perpendicular toR̄. This was done as follows. Initially
a specific normal vector was chosen depending on the va
of the three components of the radial vectorR̄5(r 1 ,r 2 ,r 3).
If all the components of the radial vector are nonzero, th
the normal vector chosen was (2r 2 ,r 1,0). If some of the
components are equal to zero, then the corresponding c
ponents of the normal vector are taken as one and for o
components which are nonzero, the corresponding com
nents were equated to zero. Using this specific normal ve
and a randomly chosen angular variablef1 between 0 to 2p,
the rotation matrixDR̂(f1) was used to rotate the specifi
normal vector through the anglef1 about the unit vector
along the radial vectorR̄, to obtain the random normal vecto
in the plane perpendicular to the radial vector. The selec
of random normal vectors to the radial vector makes s
that the dipole vectors are randomly oriented at the angla
with the respective radial vectors.

The probability of a dipole getting excited is propo
tional to cos2 u, whereu is the angle made by the dipole wit
thez-axis. In selecting the excited dipoles with this probab
ity, the same Transformation method described previou
was adopted. A random number is chosen and if this rand
number matches with the fraction of the area under the pr
ability curve with the total area, then that dipole was r
tained. Otherwise, the procedure was repeated from the
tial step of selecting the ground state distribution.

2. Diffusion of the dipoles on the spherical surface

Let V̂, R̄ and V8̂, R̄8 represent the point dipole vecto
and corresponding radial vector before and after the diffus
in a single time step~one iteration in simulation!. The diffu-
sion length is the same in the case of radial vector and dip
vector in a single time step. So the diffusion of the dipoles
the spherical surface was performed by rotation of the ra
and dipole vectors by the three-dimensional rotation ma
about a randomly chosen vectorn̂ normal to the radial vec-
tor. This random normal vector was chosen by the sa
procedure described in Sec. II B 1. Ifn̂[(n1 ,n2 ,n3) repre-
sent the unit normal vector which is the axis of rotation a
b is the angle of rotation, then the three-dimensional rotat
matrix Dn̂(b) is given as22
Dn̂~b!5S cosb1~12cosb!n1
2 ~12cosb!n1n22n3 sinb ~12cosb!n1n31n2 sinb

~12cosb!n1n21n3 sinb cosb1~12cosb!n2
2 ~12cosb!n2n32n1 sinb

~12cosb!n3n12n2 sinb ~12cosb!n3n21n1 sinb cosb1~12cosb!n3
2

D . ~7!
n

The angle of rotationb was obtained as follows. Th
probability of finding a particle atr at time t given that the
initial position is r 0 at t50 for diffusion on a two-
dimensional infinitely planar surface23 is given by
W~r ,t;r 0,0!5
1

4pDt
expS 2

ur 2r 0u2

4Dt D , ~8!

whereD is the diffusion coefficient. In the case of diffusio
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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8505J. Chem. Phys., Vol. 112, No. 19, 15 May 2000 Diffusion of fluorescent probes on a sphere
on a spherical surface, the probability equation for the an
b at time t given thatb50 at t50, is @Eq. ~20! with proper
normalization#

W~b!5
1

4pR2 S l~2l 11!Pl~cosb!expS 2
l ~ l 11!D trt

R2 D .

~9!

Since this is an infinite sum of Legendre polynomia
Pl(cosb), it is computationally intensive to calculateb.
Hence, an approximate equation was used in the simula
procedure that is valid only for extremely small time scal
This was obtained from the probability equation for the p
nar diffusion @Eq. ~8!# by replacing the displacementur
2r 0u by R b (b measured in radians!. The probability of the
angle of rotationb satisfies Eq.~10!,

W~Rb!>
1

4pD trt
expS 2

R2b2

4D trt
D . ~10!

The mean displacementRbm ~wherebm is the mean angula
displacement! per iteration is calculated as

Rbm52AD trt, ~11!

wheret is the time per iteration. It is important to note th
the probability Eq.~10! is true only for very smallt and
mean displacements. Hence the time per iterationt is chosen
appropriately such that this condition is valid. For examp
for the values ofR510 Å andD tr5131025 cm2/s, the time
per iterationt is chosen as 1 ps such that the mean ang
displacementbm'0.063 rad.

The diffusion was carried out in two different ways.
the first method, the mean angular displacementbm per it-
eration was calculated and this value was used as the a
of rotation b in one iteration. In the second method, theb
values satisfying Eq.~10! (t5t) were calculated using th
random numbers generated by the Transformation me
described earlier.@It may be noted that the probability in th
area element betweenb and b1db on the surface of the
sphere is 2pR2W(Rb)sinbdb.] After getting a value forb
and the randomly chosen unit normal vector components
three-dimensional rotation matrix was computed. The n
vectorsV8̂ andR8 were then obtained by multiplyingV̂ and
R̄ with the matrixDn̂(b). The anisotropy decays generat
using these two methods are very similar.

The selection of the time step per iteration is importa
such that the mean displacement is very small compare
the radius itself and at the same time large enough such
the simulation of anisotropy decay is completed in a reas
able number of iterations. The number of iterations can
doubled to achieve the same level of anisotropy decay
reducing the iteration time by 4 or by reducing the diffusi
coefficient by 4. Anisotropy decays were almost independ
of iterations forbm,0.08 rad.

3. Calculation of the anisotropy function

The ‘‘fluorescence intensity’’ along thex, y, andz-axes
were calculated as squares of the respective componen
the dipole vectorV̂. The components alongx and y-axes
Downloaded 30 Sep 2004 to 202.54.37.75. Redistribution subject to AIP
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ought to be quantitatively equal~except for simulation noise!
which was used to check the algorithm. The anisotropy w
calculated as

r ~ t !5
I i2I'

I i12I'

5
I z2I x

I x1I y1I z
5

I z2I y

I x1I y1I z
. ~12!

The fluorescence anisotropy due to diffusion on the spher
surface ought to decrease to zero. Hence, the diffusion of
dipoles was continued until the anisotropy decreases t
value which is comparable to the accuracy (,0.1% of the
initial value! in typical experiments.

The validity of each and every step in this simulatio
procedure was checked with the help of computer graph
If the initial selection of excited dipoles follows cos2 u dis-
tribution, then the initial anisotropyr 0 value should be inde-
pendent of the orientation anglea and should be equal to
0.4, which was observed. The selection of random norm
vectors and the use of the rotation matrixDn̂(b) in simulat-
ing the surface diffusion of dipoles were also tested. T
simulation was done for varying values ofa with about
85 000 dipoles diffusing on a spherical surface, using a D
Alpha OSF/1 Computer system. The simulation was also c
ried out for varying values of radius of the sphere R a
translational diffusion coefficientD tr . The results are dis-
cussed in Sec. III A.

C. Experiment

1. Materials

Nile red ~Nile Blue A Oxazone, Exciton Inc., USA! and
SDS ~Sodium dodecyl sulfate, Sigma Chemical Co., USA!,
were used as received. The structure of the dye Nile re
shown in Fig. 2. The fluorescence decay of Nile red in e
anol was single exponential indicating the purity of the dy
The fluorescence lifetime of Nile red was 3.57 ns in ethan
The 2% SDS micelle solution was prepared by stirring
surfactant in warm deionized water for about 1 h. The N
red dye~in ethanol solution! was added and stirred. The dy
~2.27mM! to surfactant~0.069 M! ratio was'1:30 000.

2. Fluorescence measurements

The steady state fluorescence and anisotropy meas
ments were made using either Shimadzu RF540 or SP
Fluorolog 1681 T format spectrofluorophotometers. The ti
resolved fluorescence measurements were made using a
repetition rate~800 kHz! picosecond dye laser~rhodamine
6G! coupled with a time correlated single photon counti

FIG. 2. Structure of the dye Nile red.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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8506 J. Chem. Phys., Vol. 112, No. 19, 15 May 2000 Krishna et al.
~TCSPC! spectrometer described elsewhere,24,25 currently
using a microchannel plate photomultiplier~Hamamatsu
2809!. The samples were excited at the excitation wa
length of 570 nm and the fluorescence decays were colle
at the emission wavelength of 640 nm which is the emiss
maximum of Nile red in SDS micelles. The sample was e
cited with vertically polarized light and the fluorescence d
cay was collected with emission polarizer kept at the ma
angle ('54.7°) with respect to the excitation polarizer f
measuring fluorescence lifetimes. For the anisotropy m
surements, the fluorescence intensities were measured
the emission polarizer set at parallel or perpendicular or
tation with respect to the excitation polarizer. Geometry f
tor ~G-factor! for the TCSPC setup was determined by us
the Nile red solution in ethanol whose rotational correlat
time ~0.18 ns! is faster than its fluorescence lifetime~3.57
ns!. The emission of Nile red is completely depolarized af
2 ns. The parallel and perpendicular polarized compone
were collected for the timest i and t' seconds such that th
two decays overlap exactly in the tail region~after 2 ns!.
From these two values,G-factor is calculated ast' /t i . For
the case of Nile red in SDS micelles, the two polarized
cays were collected for the times that are in the same ra
The instrument response function~IRF! was recorded using a
nondairy creamer scattering solution. The full width at h
maximum~FWHM! of the IRF is about 150 ps. Typical pea
count in the emission decay for fluorescence intensity
anisotropy measurements was about 200 000 and the
counts in the decay was typically 13 million. The time p
channel was 37.84 ps.

The experimentally measured fluorescence decay
F(t) is a convolution of IRF,R(t) with the intensity decay
function I (t) according to the equation

F~ t !5E
0

t

R~s!I ~ t2s!ds. ~13!

The intensity decay data was fitted to the appropriate eq
tions by iterative deconvolution procedure using Levenbe
Marquardt algorithm for optimization of the
parameters.20,24,26,27In the case of systems studied here, t
fluorescence decay data was fitted to either a single~magic
angle decay! or a multiexponential~polarized fluorescence
decays! function as

I ~ t !5S ia i expS 2
t

t i
D , ~14!

wherea i andt i are the amplitudes and the lifetimes.
The polarized fluorescence decays~parallel and perpen

dicular! were usually fitted simultaneously~or globally! to
appropriate functions defining the population decay~one or
two lifetimes as determined by the decay at magic angle! and
anisotropy decay,r (t).28–30 As will be noted elsewhere, th
anisotropy decay of micelle-bound fluorophore is a multip
cation of contributions from three independent depolariz
motions. For this reason it was decided to extract the b
representation ofr (t) from experimental data rather than fo
low the conventional procedure~see below!. For the calcu-
lation of the anisotropy decay,r (t), one requires the polar
ized intensity decay functionsI i(t) and I'(t). The G-factor
Downloaded 30 Sep 2004 to 202.54.37.75. Redistribution subject to AIP
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corrected polarized fluorescence decays@parallel and perpen-
dicular, F i(t) and F'(t)] were individually fitted to a four
exponential function to give a good fit to the experimen
data. The good fits were judged by the randomness of res
als using the following criteria:~i! random distribution of
residuals,~ii ! value of chi-square~close to 1.0!, and ~iii !
distribution of autocorrelation function values.27 The purpose
of these fits is to simply represent the intensity decay cur
(I i(t) andI'(t)) and no physical meaning is attributed to th
lifetimes and amplitudes obtained in the fits. Using these t
intensity decay functions, the anisotropy decay is calcula
using the equation

r ~ t !5
I i~ t !2I'~ t !

I i~ t !12I'~ t !
. ~15!

This smoothly varying fluorescence anisotropy decay w
used for the final testing of the theoretical equation.

The analysis of data described above uses a strateg
which I i(t) or I'(t) are fitted to four exponentials eve
thoughr (t) is a six exponential function. The numerical a
curacy of this procedure was tested using simulated d
I i(t) andI'(t) were calculated at the intervel of 40 ps up
12 ns~300 points! for typical values for the parameters re
evant to the problem of diffusion of the fluorophore~fluores-
cence lifetime 2.5 ns! in a micelle. I i(t) and I'(t) are de-
fined as follows:30

I i~ t !5
1

3
expS 2

t

2.5 nsD @112r ~ t !#,

~16!

I'~ t !5
1

3
expS 2

t

2.5 nsD @12r ~ t !#,

where the anisotropy decayr (t) is defined by Eq.~33!. The
following values were used for the calculation:r (0)50.4,
a515°, t tr515 ns,tw51 ns,S50.5, andtm510 ns.r (t) is
a six exponential function and henceI i(t) or I'(t) is a seven
exponential function. For the above simulation values
time constants of the seven exponentials were 2.5, 1.2, 1.
0.75, 0.545, 0.526, and 0.429 ns. The amplitudes of se
exponentials were positive inI i(t), whereas six of the am
plitudes were negative inI'(t). It was found thatI i(t) could
be fitted to a four exponential function with time constan
2.619, 2.372, 1.053, and 0.527 ns with positive amplitud
for all. The deviation of the fitted value from the true valu
(I true2I calc)/I true, was less than 131025. Similarly, I'(t)
could be fitted to a four exponential function with time co
stants 2.501, 1.130, 0.544, and 0.522 ns with negative
plitudes for the last three time constants. The deviation of
fitted value from the true value was less than 131026. The
deviation of the difference (I i(t)2I'(t)) from the true value
was also less than 131025. We therefore conclude that th
fitting procedure described above for obtaining numeri
representations ofI i(t), I'(t), andr (t) from the experimen-
tal data are satisfactory.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. RESULTS AND DISCUSSION

A. Results of the Monte Carlo simulations

The translational diffusion of 85 000 excited dipoles o
ented along the normal to the spherical surface (a50) is
shown in Figs. 3 and 4 at different stages of the Monte Ca
simulation~refer the figure captions for details of simulatio
parameters!. Figure 3 shows the surface diffusion for th
case when all the dipoles are oriented parallel to thez-axis, to
illustrate the random diffusion process modeled in the Mo
Carlo simulations. Figure 4 shows the distributions for t
case when the excited dipoles are initially distributed w
the probability cos2 u. The latter case is identical to the fluo
rescence anisotropy experiment using fluorophores em
ded in spherical micelles. The components of intensi
along the three axes,I x , I y , and I z , and the anisotropy
r (t)5(I z2I y)/(I x1I y1I z), as a function of time are show
in Fig. 5. The anisotropy decay is identical for both the init
distributions except thatr (0)51 in the former case~Fig. 3!
and r (0)50.4 in the latter case~Fig. 4!. The anisotropy de-
cay is single exponential with the decay constant equa
R2/6D tr . The decay constant,R2/6D tr , is found to be inde-
pendent of the value ofR andD tr used in the simulation a
long as t is chosen such thatb,0.1. Single exponentia
decay is the one predicted by the theoretical equation foa

FIG. 3. Translational diffusion of the dipoles oriented alongz-axis on the
surface of the sphere, as viewed from abovez-axis ~projected in the
xy-plane!. ~A!–~F! show the distribution of the dipoles on the surface of t
sphere at different stages. The simulation parameters were radius o
sphere,R510 Å, translational diffusion coefficient,D tr5131025 cm2/s
and time step per iteration,t51 ps.
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50 ~see below!. The deviation of the simulated data from th
exponential fit is shown in the bottom panel of Fig. 5.

The fluorescence anisotropy decays for the translatio
diffusion of dipoles tilted at an anglea ~from 0° to 90°)
with respect to the surface normal are shown in Fig. 6. Th
curves clearly show that the anisotropy decay depends on
orientation anglea. This is an unanticipated new result. A
these decays can not be fitted to single exponential functi
At the extreme case ofa590°, the anisotropy decay fit
adequately to a double exponential function with the cor
lation timesR2/6D tr and R2/2D tr and the respective ampli
tudes 0.25 and 0.75. It was not possible to fit the anisotr
decays at othera values to two exponential functions wit
the two correlation times fixed at these values. The fits w
particularly bad at the intermediate values ofa. The com-
bined analysis of all the anisotropy decays at the seven
ues ofa to a three exponential function with common co
relation times ~and varying amplitudes! indicated the
presence of a third correlation time. From the obtained v
ues of the amplitudes, it was difficult to identify the relatio
ship between the amplitudes of the correlation times and
orientation anglea.

As described in the next section, the diffusion equat
for a tilted dipole on the spherical surface was solved

the

FIG. 4. Translational diffusion of the excited dipoles oriented along
radial vectors on the surface of the sphere as projected on theyz-plane. The
excited dipoles are initially selected with the probability cos2 u, whereu is
the angle made with thez-axis which is the axis of polarization of the
excitation light.~A!–~F! show the distribution of the dipoles on the surfac
of the sphere at different stages of the translational diffusion. The simula
parameters were radius of the sphere,R510 Å, translational diffusion co-
efficient, D tr5131025 cm2/s and time step per iteration,t51 ps. The
corresponding fluorescence anisotropy decay curve is shown in Fig. 5.
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actly. The anisotropy decay due to translational diffusion
tilted dipoles with an initial distribution as in the fluore
cence experiment on the spherical surface is the sum of t
exponentials,

r ~ t !5 2
5~cos2 a2 1

2 sin2 a!2 exp~26D trt/R
2!

1 6
5 sin2 a cos2 a exp~25D trt/R

2!

1 3
10 sin4 a exp~22D trt/R

2!. ~17!

The simulated anisotropy decays for different orientat
anglesa are fitted to the theoretical equation and the fits
shown in the inset of Fig. 6. The simulated decays fit wel
the analytical equation indicating the correctness of
Monte Carlo method to simulate the translational diffusi
on the sphere.

It may be noted that the coefficients of the exponent
in Eq. ~17! are functions ofa and the decay constants a
functions ofD tr /R

2. For a50°, r (t)50.4 exp(26Dtrt/R
2)

which is the well known result for the fluorescence anis
ropy due to rotational diffusion of a spherical solute
liquids1 with the following equivalence between the rot
tional and translational diffusion coefficients:D rot5D tr /R

2.
It may be noted also that the translational correlation time

FIG. 5. Simulated fluorescence anisotropy decay,r (t), due to the transla-
tional diffusion of dipoles oriented along the radial vectors on the surfac
a sphere~see caption for Fig. 4!. I x , I y , andI z are the intensities along the
three directions which were used to calculater (t) using Eq.~12!. The decay
was simulated for the values of the radius of the sphere,R510 Å, transla-
tional diffusion coefficient,D tr5131025 cm2/s and time step per iteration
t51 ps. The number of iterations can be doubled to achieve the same
of anisotropy decay by reducingt by 4 or by reducingD tr by 4. The single
exponential anisotropy decay for the calculated correlation time,R2/6D tr

5166.67 ps is overlaid on the simulated curve ofr (t). Deviation of calcu-
lated and simulated values are shown in the bottom panel.
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R2/6D tr , not R2/4D tr as assumed in interpreting the expe
mental fluorescence anisotropy decay data of fluores
dyes in micelles.6 For a590°, the decay is two exponentia
and more significantly, the slowest component, (2D tr /R

2), is
predominant. The decay component with the decay cons
(5D tr /R

2), is significant only at intermediate angles wi
maximum component ata545°. As explained in the nex
section, the origin of slow decay components is due to
geometric phase factor which arises due to the diffusion o
vectorial property on a spherical surface.

Although Eq.~17! contains three exponentials, there a
only two fitting parameters, translational diffusion timet tr

defined asR2/D tr and the orientation anglea, that have to be
optimized in the analysis of the experimental data. Sect
III C describes the application of this equation in interpreti
the anisotropy decay of a fluorescent probe embedded in
celles. Micelles are the smallest possible curved biolog
surfaces where the translational diffusion contributes sign
cantly to the fluorescence depolarization during the lifeti
of the excited fluorophore.

B. Analytical solution for the translational diffusion of
oriented dipoles on a spherical surface

When the dipoles are oriented parallel to the radial v
tors, the diffusion equation becomes the usual spherical
monics equation31 with the radial coordinate being a consta
at the radius of the sphere,R,

]

]t
P~u,f,t !5D tr¹

2P~u,f,t !, ~18!

f

vel

FIG. 6. Fluorescence anisotropy decays obtained from the Monte C
simulations of the translational diffusion of tilted dipoles on the surface o
sphere at different orientation anglesa50°, 30°, 45°, 60°, and 90°, are
shown. The decays were simulated for the valuesR510 Å, D tr5131025

cm2/s, andt51 ps. The figure shows two decays for each value ofa,
simulated using different sets of random numbers. Inset shows the fi
these decays to Eq.~17!, plotted on log scale.
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whereP(u,f,t) is the probability of finding the dipole at th
angular coordinatesu andf at timet, ¹2 is the Laplacian in
the spherical polar coordinates. Hereu andf represent the
polar and azimuthal angles of the dipole, respectively. T
equation can be easily separated into the two angular paru
and f parts! using the method of separation of variables32

The u part becomes

1

R2 sinu

]

]u S sinu
]

]u D P~u,t !52
l

D tr
P~u,t !. ~19!

The general solution which satisfy the above equation is

P~u,t !5S lAl Pl~cosu!expS 2
l ~ l 11!D tr

R2
t D , ~20!

wherePl(cosu) are thel th order Legendre Polynomial an
Al is the corresponding scaling factor.

In this case where the dipoles are oriented paralle
radial vectors, the fluorescence anisotropy equation is
fined by

r ~ t !5^P2~cosV!& t5^P2~cosu!& t , ~21!

where V is the angle made by the dipole with thez-axis.
Using the above solution@Eq. ~20!# for theu part, the anisot-
ropy equation becomes a single exponential as

r ~ t !5c expS 2
6D trt

R2 D , ~22!

wherec is a constant. That means, the fluorescence an
ropy decays exponentially with a correlation time ofR2/6D tr

when the dipoles are oriented parallel to the radial vect
This is in agreement with the Monte Carlo simulations.

The theoretical derivation of the fluorescence anisotro
equation becomes complex in the case where the dipoles
oriented at a particular anglea with the radial vectors. A
diffusion equation similar to Eq.~18! has to be set up for the
translational diffusion in such a case and has to be solve
obtain the solution similar to Eq.~20!. The main difference
that arises whenaÞ0 is the geometric phase factor.33,34

When the dipole is oriented at an angle with the respec
radial vector, the direction at which the dipole points a
given time during the translational diffusion depends on
path it followed to arrive at that particular position. Th
means the phases of the different dipole vectors startin
the same initial position and arriving at the same final po
tion but following different paths will be different. A recen
study was focused on understanding the distribution of th
geometric phases during the Brownian motion on a sphe35

This geometric phase factor has to be taken care of in se
up and solving the diffusion equation. This requires a diff
ent formalism which should include one extra degree of fr
dom which takes account the phase factor for the diffus
process on the surface of a sphere. This was done as foll

For solving the problem of translational diffusion of or
ented dipoles, we consider an additional frame associ
with the dipole in addition to the space-fixedx, y, andz axes.
Let an orthonormal set of three vectorsa, b, and c be the
frame attached with the dipole that is undergoing trans
tional diffusion. The vectorc is selected such that it is pa
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allel to the radial vector and the dipole is tilted at an anglea
with respect toc in the plane of the vectorsb andc. Hence
the unit dipole vector that is undergoing translational diff
sion becomesccosa1b sina. The model for translationa
diffusion which was simulated here by the Monte Ca
methods gives thisabc frame infinitesimal random rotation
around the body fixeda andb axes. In this process, thec axis
moves and with it the location of the dipole on the surface
the sphere. Ifc returns to its original value in this process
diffusion, the dipole has returned to the same point on
sphere, but because of the geometric phase effect discu
before, thea andb axes need not, in general, return to the
original values, and hence the dipole will be different. B
working on this formalism of two frames~space fixed and
body fixed!, we have ensured that the extra degree of fr
dom required to take account of the geometric phase facto
explicitly included.

With the excitation light polarized along thez-axis, the
probability of excitation of the dipole located ata, b, c is
equal to the square of the component of the dipole vecto
the z-axis, i.e., (cz cosa1bzsina)2. After time t, let the di-
pole diffuse to a8, b8, c8 with the probability
P(a8,b8,c8:a,b,c:t). Projecting it back onto the space fixe
z axis and squaring, the intensityI z becomes

I z}~cz cosa1bz sina!2~cz8 cosa1bz8 sina!2. ~23!

The expression for anisotropy can be written as

r ~ t !5
3

2

I z~ t !

I ~ t !
2

1

2
, ~24!

whereI 5I x1I y1I z is the total fluorescence intensity.
For calculatingr (t), one needs to compute the ensemb

average ofI z . That can be obtained by multiplying the ex
pressions forI z @Eq. ~23!# and the probabilityP and integrat-
ing overa, b, c anda8,b8,c8. The conditional probabilityP
is the solution of the diffusion equation which att50 is a
delta function centered around the initial frame. This is t
Green’s function of the diffusion equation. It can be e
pressed in a similar manner to the Green’s function of
Schrodinger equation, in terms of eigenfunctions,

P~a8,b8,c8:a,b,c:t !5SpCp~a8,b8,c8!

3Cp~a,b,c!exp~2Ept !. ~25!

HereCp ,Ep are the eigenfunctions and eigenvalues,~labeled
by the indexp) of the corresponding diffusion operator.

For the case of interest, i.e., absence of rotation about
radial direction to the spherical surface, the diffusion ope
tor will be proportional toJa

21Jb
2 . The absence ofJc

2 shows
that we have built-in the constraint of no rotation about t
normal to the sphere. This operator is similar to the Ham
tonian of the symmetric top molecule. Hence the eigenval
and eigenfunctions will be similar to those which occur
the quantum-mechanical treatment of the symmetric to36

The appropriate quantum numbers are~i! J which enters the
eigenvalue of the square of the angular momentum asJ(J
11), ~ii ! M, which is the eigenvalue of thez component of
the angular momentum, i.e., along the space fixedz axis, and
~iii ! K which is the eigenvalue of thec component of angular
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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momentum, i.e., along the body fixedz axis. These three
operators commute and their eigenvalues are sufficien
label states for the top, whose wave functions depend
three variables. The conventional choice for these three v
ables is the set of Euler angles giving the orientation of
body fixed frame with respect to the space fixed frame.37 But
for the problem considered here, it is convenient to use
components ofa, b, andc which in turn can be expressed
terms of Euler angles. The intensityI z is already expressed i
terms of these components@Eq. ~23!#. The eigenvalues of the
diffusion operatorJa

21Jb
2 are obtained by adding and su

tractingJc
2 ~sinceJ25Ja

21Jb
21Jc

2) and hence these areJ(J
11)2K2. Taking account of the angular diffusion coeffi
cient D tr /R

2, the eigenvalues of the diffusion equation b
comes (J(J11)2K2)D tr /R

2.
Each of the factors inI z can be expressed as a sum

eigenfunctions. This ensures that whenI z @Eq. ~23!# is mul-
tiplied by P @Eq. ~25!# and integrated to compute the avera
of I z over the ensemble, only those eigenfunctions will co
tribute and the rest will disappear by the orthogonality re
tions. The four relevant eigenfunctions are

C051,

C15A 45
4 ~cz

221/3!,

C25A15bzcz ,

and

C35A 15
4 ~bz

22az
2!. ~26!

The eigenfunctionC0 corresponds to that of the quantu
numbersJ50, M50, andK50 and have the zero eigen
value. The three eigenfunctionsC1 , C2 , and C3 have J
52, andM50, but have differentuKu values as 0, 1, 2, and
hence the corresponding eigenvalues are 6, 5, and 2.

One of the factors in the intensity expression@Eq. ~23!#
can be written as

~cz cosa1bz sina!25A 4
45~cos2 a2 1

2 sin2 a!C1

1A 4
15~sina cosa!C2

1A 1
15 sin2 aC31 1

3 C0 . ~27!

The constant term (C0 term! corresponds to the nondecayin
term under diffusion~zero eigenvalue!. The second factor in
I z can be similarly written in terms of primed quantitie
Multiplying I z by P and integrating over the initial and fina
parameters of the frame, the expression forI z was obtained
as the sum of the squares of the coefficients of eigenfu
tions in Eq.~27!. It can be calculated thatI 5 1

3 and is inde-
pendent ofa and time. Hence the anisotropyr can be com-
puted as
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r ~ t !5
2

5 S cos2 a2
1

2
sin2 a D 2

expS 26D tr t

R2 D
1

6

5
sin2 a cos2 a expS 25D tr t

R2 D
1

3

10
sin4 a expS 22D tr t

R2 D . ~28!

The constantJ50 term cancels against the2 1
2 in the expres-

sion for r (t) @Eq. ~24!#.
This is the expression tested in Sec. III A against t

results obtained from the Monte Carlo simulations of t
translational diffusion of oriented dipoles on the surface o
sphere. At zero time,r (t) takes the value 0.4 independent
a @Eq. ~28!#, as expected. The slower decays occur only ifa
is nonzero. Although the translational diffusion is happen
with the same diffusion coefficient, the depolarization of t
fluorescence anisotropy is slower for the case of dipoles
ented away from the normal to the spherical surface beca
of the presence of nonzerouKu modes of diffusion. For the
case of the dipole normal to the sphere, onlyK50 contrib-
utes, and the equation for the time resolved fluorescence
isotropy is exp(26Dtrt/R

2) which can also be obtained mor
simply from the eigenvaluel ( l 11) of the Laplacian on the
sphere, forl 52 @Eqs.~18! and ~20!#.

C. Diffusion of Nile red in SDS micelles

SDS micelles were prepared by stirring the surfact
solution at a concentration above the critical micellar co
centration~cmc! of 8 mM in warm deionized water for abou
1 h. SDS micelles prepared thus are known to be spher
~core radius of approximately 16.7 Å! and the aggregation
number is'62.8,38,39Nile red being a hydrophobic molecul
it is insoluble and nonfluorescent in water.40 It solubilizes
readily in SDS micelles.8 The distribution of the dye among
micelles is governed by Poisson statistics. At a low conc
tration ratio of the dye to micelle used in the experime
~2.27mM of dye and 0.99 mM of micelle! the probability of
finding more than one dye per micelle is extremely sm
i.e., ,0.2%.8 The fluorescence is therefore from the d
molecules that are present as one per micelle. The fluo
cence decay of Nile red in SDS collected at the emiss
maximum is single exponential with a lifetime of 2.53 n
TheG-factor corrected parallel (F i) and perpendicular (F')
components of fluorescence are shown in Fig. 7~A!. Figure
7~B! shows the smooth polarized intensity decays (I i andI')
obtained by fitting the fluorescence curves to the convolut
equation@Eq. ~13!# as described in the Methods. The aniso
ropy decay,r (t) obtained using Eq.~15! is shown in Fig. 8.

The fluorescence anisotropy decay of fluorophores e
bedded in micelles and its origin in terms of molecular d
namics have been studied and discussed.6,7 The fluorescence
anisotropy decay for the dye molecule in a spherical mice
is caused by three independent depolarizing motions:~i! the
translational motion of the dye on the spherical surface of
micelle, ~ii ! wobbling dynamics of the dye about the loc
symmetry axis in the micelle,41,42 and~iii ! the rotational dy-
namics of the spherical micelle as a whole. The decay t
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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constants associated with the three motions aret tr ~transla-
tional diffusion!, tw ~wobbling dynamics! andtm ~rotation of
the micelle!. These three motions are shown in Fig. 9.
described earlier, the fluorescence anisotropy decay du
translational diffusion on the spherical surface is given
Eq. ~17!. The mathematical equations for the fluorescen
anisotropy decay due to wobbling dynamics and rotation
the micelle are as follows.

The fluorescence anisotropy due to the wobbling dyna
ics of a linear molecule in a planar membrane is gener
described in terms of the wobbling-in-a-cone model wh
the molecule wobbles within a cone of semiangleu0 that is
related to the order of the environment.41,42According to this
model, the anisotropy decay equation becomes

FIG. 7. ~A! G-factor corrected experimental polarized fluorescence dec
(F i and F' components! of Nile red in SDS micelles. The instrument re
sponse function,R(t) is also shown in the figure.~B! Polarized intensity
decays (I i andI') obtained by deconvoluting the fluorescence decays us
the convolution integral@Eq. ~13!# usingR(t) and a four exponential func-
tion for I i and I' . The fitted equations wereI i(t)50.6267 exp(2t/0.2690
ns!11.1976 exp(2t/0.8059 ns)11.5506 exp(2t/2.4798 ns!11.1865 exp
(2t/2.4825 ns!, and I'(t)520.7636 exp(2t/0.5035 ns!10.9712 exp
(2t/2.5463 ns!10.9193 exp(2t/2.5471 ns!10.6532 exp(2t/2.5473 ns!.

FIG. 8. Fluorescence anisotropy decay of Nile red in SDS micelles, ge
ated using the polarized fluorescence intensity decays that are shown
Fig. 7~B!. The inset shows the fitting of this anisotropy decay to differe
models, plotted on log scale. The solid curve is the experimental anisot
decay. The dashed~curve a! and dashed–dotted~curve b! curves are the fits
to Eq. ~33! with S51 ~no wobbling dynamics! and withD tr50 ~no trans-
lational diffusion!. The dotted curve overlapping with the experimen
curve shows the fitting to Eq.~33! that includes all the three depolarizin
motions forS50.471~see text for details!.
Downloaded 30 Sep 2004 to 202.54.37.75. Redistribution subject to AIP
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r ~ t !

r ~0!
5@S21~12S2!exp~2t/tw!#, ~29!

whereS is the order parameter andtw is the wobbling time
constant. The order parameterS is related to the cone sem
angleu0 according to the equation

S5 1
2~cosu0!~11cosu0!. ~30!

Wobbling dynamics of the dye molecule in micelle may
considered similar to that in the membrane. The wobbl
time constanttw is related to the wobbling diffusion constan
Dw by the relation ~according to the wobbling-in-cone
model42!,

Dwtw~12S2!52x0
2~11x0!2@ log@~11x0!/2#

1~12x0!/2#/@2~12x0!#

1~12x0!~618x02x0
2212x0

327x0
4!/24,

~31!

wherex05cosu0.
The rotational motion of the spherical micelle leads to

single exponential anisotropy decay,

r ~ t !

r ~0!
5expS 2

t

tm
D , ~32!

where tm is the rotational time constant for the spheric
micelle.tm is calculated to be 8.3 ns in water at 25 °C usi
the Stokes–Einstein equation,tm5hV/kT, whereV is the
molecular volume of the micelle@hydrodynamic radius,r H

521 Å ~Refs. 8,13!# andh is the viscosity.8 This value was
kept constant in the data analysis to fitr (t) which is de-
scribed below.

The three motions described above which depolarize
fluorescence are independent of each other and hence
anisotropy decay is the multiplication of the three parts
given below,

s

g

r-
the
t
py

FIG. 9. The three depolarizing motions for the fluorescent probe in a
celle; ~i! wobbling dynamics of the dye in the micelle (tw), ~ii ! the lateral
diffusion of the dye on the surface of the micelle (t tr), and ~iii ! the rota-
tional diffusion of the spherical micelle (tm). tw , t tr , andtm are the decay
constants that can be associated with the physical parameters related
three processes, respectively.
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r ~ t !

r ~0!
5F S cos2 a2

1

2
sin2 a D 2

expS 26t

t tr
D

13 sin2 a cos2 a expS 25t

t tr
D1

3

4
sin4 a expS 22t

t tr
D G

3@S21~12S2! exp~2t/tw!#expS 2
t

tm
D . ~33!

Here,t tr represents the translational diffusion time which
defined asR2/D tr , whereR is the radius of the micelle an
D tr is the translational diffusion coefficient.

The experimental anisotropy decay shown in Fig. 8 w
initially fitted ~using Jandel Scientific Sigmaplot V. 3.0! by
assuming that the translational diffusion is absent; that
D tr50 in Eq. ~33!. The best fit~curve a in Fig. 8! for this
equation was obtained forS50.2 andtw51.01 ns. Clearly,
neglecting the translational diffusion leads to a misfit of e
perimental data.

Next, the effect of neglecting wobbling dynamics w
examined by settingS51 in Eq.~33!. The best fit values for
a andt tr were 63.01° and 3.54 ns but the fit was unsatisf
tory as seen by the deviation of the fitted curve~curve b in
Fig. 8! from the data. Thus, it is necessary to include b
wobbling and translational diffusion in the equation. Th
required optimization of four unknown parameters in E
~33!, namely,S, tw , a, andD tr . The experimental data o
r (t) was fitted to Eq.~33! by optimizing these four param
eters. It was found that the optimized values for the fo
parameters varied substantially. The range for each of th
parameters was obtained from the fits asS50.6060.16, t tr

515.2669.14 ns,a50.36637.52°, andtw50.7360.19 ns.
In order to determine these parameters accurately, it
decided to make use of the value of order parameterSdeter-
mined by an independent method~see below! as a fixed pa-
rameter.

SDS micelles swell to a large size in the presence
NaCl and form large wormlike/rodlike micelles at high sa
and surfactant concentrations.39,43–45 Because of the large
size,t tr andtm are also large compared to fluorescence li
time and hence these contributions in Eq.~33! are absent.
Hence, the order parameterS can be determined in this cas
from the ratio of the fluorescence anisotropy at zero ti
(r 0) and the limiting value at long time (r `) as S
5(r ` /r 0)0.5 ~Refs. 42, 46 and 47!. Highly viscous micelles
containing the dye were prepared by mixing the dye~1.73
mM! with the concentrated solution of the surfactant~1.73
M, dye to surfactant ratio of 1:1000! and then drying the
solution on a glass plate until it became a film of thick pas
The anisotropy decay was obtained for this film by plac
the glass plate at an angle of 45° to the exciting laser be
From the values ofr 0 ~0.365! and r ` ~0.081!, the order pa-
rameterS was calculated to be 0.471.

The experimental anisotropy decay data of Nile red
SDS micelles was fitted to Eq.~33! by fixing the value ofS
at 0.471. The best fit values werea50.9861.91°, t tr

521.8960.48 ns, andtw50.8960.01 ns. Figure 8 show
the best fit curve~dotted curve! overlapping with the experi-
mental curve. From the values oft tr and the core radius o
the micelleR516.7 Å,8,38 the translational diffusion coeffi
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cient was calculated to be 1.2760.03310210 m2/s. The wob-
bling diffusion coefficient was calculated to be 2.1060.02
3108 s21 using the values ofS and tw and Eq.~31!. From
the value ofS, the cone semiangleu0 ~Refs. 41, 42! was
calculated to be 53.7°.

The application of Eq.~33! to interpret the experimenta
anisotropy decay for Nile red in SDS micelles has giv
good estimates for the value of the tilt angle of the molecu
dipoles as 1°62°. From this value, one may consider th
the molecular dipoles are aligned parallel to the radial dir
tion. However, the molecule wobbles in a cone of lar
semiangle of 53.7° indicating considerable mobility for t
dye molecule. The values of the different parameters
tained above using a fixed value ofS are only indicative
sinceS was obtained from a different system and viscos
dependence, if any, has not been included in the analy
Also, in deriving the expression for the anisotropy decay
the system, the anisotropy is written as the product of
three terms as contributions from the three independent
tions in the case of the micelle@refer to Eq.~33!#. The rota-
tional motion of the micelle is independent of the molecu
dynamics of the probe and hence it can be decoupled f
the other two motions. On the other hand, the decoupling
the wobbling~rotation! and translational motion of the mol
ecule is assumed in liquid solutions which may not be va
for molecules in interfaces. Indeed, there exists enough
perimental evidence, the so-called ‘‘translation rotati
paradox,’’48 or non-Brownian dynamics8 to suggest that the
decoupling may not be correct. On the other hand, the
coupling of the translational and wobbling diffusions may
valid when the time scales of these two motions differ su
stantially which is the case here as can be seen from
obtained values of the two time constants. The method
ployed here also gives estimates for the wobbling diffus
coefficient Dw and translational diffusion coefficientD tr .
Fluorescence anisotropy dynamics in micelles and the an
sis of data is perhaps unique because one obtains value
Dw and D tr in a single experiment. There is however n
independent method by which the accuracy of these va
can be checked. On the other hand, the values of the tr
lational and wobbling diffusion coefficients compare reaso
ably well with those reported for organic molecules in m
celles and membranes.8,6,12,13,49–52

It is interesting to speculate on the possible use of
experimental and simulation methods described in this pa
for a quantitative understanding of the characteristics of
surface of irregular objects of small size such as proteins
biological membranes. The fluorescence anisotropy deca
a fluorophore which is noncovalently bound to the surface
the protein would have contributions from translational d
fusion and rotation of the entire surface. Unlike micelles,
probe cannot intercalate into the protein and hence the w
bling dynamics is absent except in the case of covale
linked fluorophores. The analysis of experimental data
comes simple if experiments are designed such that rota
of the protein is prevented by immobilization. In which cas
the anisotropy decay is purely because of the lateral diffus
of the fluorophore on the surface of the protein. The surf
characteristics of the protein and the tilt angle of the pro
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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are contained in the fluorescence anisotropy decay. The
and shape of the protein can be determined only by comp
son with the theoretical equations for regular shapes~sphere,
ellipsoid, etc.! or simulated functions~for irregular shapes!
for fluorescence anisotropy. If there are regions in the surf
of the protein~for example, the active site! which are forbid-
den for the lateral diffusion of the fluorophore then one e
pects that anisotropy does not decay to zero but to a con
value which is proportional to the excluded area. So
knowledge of the shape and size of the protein will be he
ful in such cases to carry out Monte Carlo simulation and
obtain quantitative data on excluded area. In the case of fl
rescence dynamics in lipid bilayer vesicles, the contribut
of translational diffusion is negligible to the total fluore
cence depolarization because of the larger values ofR and
the timescales of observation~nanoseconds!. However, the
equations derived here will really hold good in the case
phosphorescence or NMR and ESR measurements on
vesicles where the phosphorescence lifetimes or spin re
ation times that are measured are in the order of micro
onds to milliseconds and the translational diffusion on
vesicle surface significantly affects these parameters.14

The Monte Carlo simulations carried out here to sim
late the diffusion of tilted dipoles on the surface of a sph
clearly show that the anisotropy decay due to translatio
diffusion depends on the orientation of the dipoles on cur
surfaces. The equations derived here apply as well in
case of NMR and ESR studies in understanding the me
nisms behind the millisecond or microsecond relaxat
times of probes in biological membranes or in any expe
mental study that measures the translational diffusion o
vectorial property on curved surfaces. The orientation fac
is an important factor to be considered, that has not got m
attention in literature, in explaining the fluorescence anis
ropy decay of fluorescent probes on curved biological s
faces.

The Monte Carlo simulations described in this paper c
be generalized for application to the diffusion of orient
dipoles on any curved surface. The simulations will be
use, particularly, in those systems which cannot be trea
analytically. Based on the geometry of the surface, the si
lation procedure described here for the case of a sphere
be easily modified. In the case of complicated curved s
faces, position dependent probability equations can be u
to simulate the diffusion process.

IV. SUMMARY

Monte Carlo simulations were used to simulate the tra
lational diffusion of oriented dipoles on a sphere. The anis
ropy decay is single exponential for the special case of
poles oriented along the radial direction. The simula
decays agreed well with the three exponential equation
the anisotropy decay obtained by solving the diffusion eq
tion for this problem. The decay time constants areR2/6D tr ,
R2/5D tr , and R2/2D tr , whereR is the radius of the spher
and D tr is the translational diffusion coefficient. The pr
exponential factors are functions of the orientation an
made by the dipoles with the normal to the sphere.
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Fluorescence anisotropy decay of molecules intercala
in nanometer size spherical micelles has contributions fr
three independent dynamical motions; translational diffus
as described above, wobbling of the molecular axis spann
a cone~wobbling-in-cone model!, and rotation of the spheri
cal micelle. The anisotropy decay obtained from experim
tally determined polarized fluorescence responses of Nile
in SDS micelles was fitted to the theoretical equation@Eq.
~33!# which required optimization of the values fort tr , tw ,
anda. Nile red in SDS micelles is oriented at 162° with the
normal to the micellar surface and the translational diffus
coefficient is estimated to be 1.360.1310210 m2/s.
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