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The existence of anyons in two-dimensional systems is a well-known example of
nonpermutation group statistics. In higher dimensions, however, it is expected that
statistics is dictated solely by representations of the permutation group. Using basic
elements from representation theory we show that this expectation is false in three-
dimensions for a certain nongravitational system. Namely, we demonstrate the ex-
istence of “cyclic,” or Z,,, nonpermutation groustatistics for a system ai>2
identical, unknotted rings embeddedRii. We make crucial use of a theorem due

to Goldsmith in conjunction with the Fuchs—Rabinovitch relations for the automor-
phisms of the free product group anelements. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1738189

[. INTRODUCTION

It is a well-established fact that the topology of the configuration space of a classical system
can have a nontrivial effect on its quantization. A simple illustration of this is found in the
sum-over-histories quantization of a particle on a circle wherein the set of paths with fixed initial
and final positions fall into classes labeled by the winding numiérThe full partition function
is expressed as a sum of partitions over these different classes of paths, each multiplied by an
overall phase'™?, whered<[0,27] labels the unitary irreducible representations of the funda-
mental group? of the circle. Each choice of thus leads to an inequivalent quantization of the
system. In general, inequivalent quantizations of a classical system are labeled by the unitary
irreducible representations of the fundamental group of the configuration space. Indeed, several
phenomena of physical interest ranging from the quantum statistics of point particles, to a Hamil-
tonian interpretation of the QCD theta angle, to spinorial states in quantum gravity, can be attrib-
uted to such inequivalent quantization$.

The particular phenomenon of interest to us in this paper is the emergence of quantum
statistics in systems af identical objects. For spatial dimensioths 2, the fundamental group of
the configuration space of such systems contains the permutation groupelementsS, as a
subgroup. For typical systems, the unitary irreducible representatio8s and its permutation
subgroups are sufficient to determine quantum statisticsn &, d>2, for example, the permu-
tation groupS, generated by the exchange operatibhas two inequivalent unitary irreducible
representations: The trivial on€--1) corresponds to bose statistics and the nontrivial @he (

— —1) corresponds to fermi statistics. For>2, d>2, S, has nonabelian unitary irreducible
representations which give rise to parastatistics. In dimergioR, however, statistics is dictated

by a nonpermutation infinite discrete group called the braid gByprather than the finite group

S, . The resulting statistics is referred to as “anyonic” and plays a central role in the study of
two-dimensional systents

Since the permutation grou®, is always a subset of the fundamental group of the configu-
ration space fod>2, it is generally believed that quantum statistics is dictated by a nonpermu-
tation group only in two-dimensions. However, fdi>2 quantum statistics does not merely
depend on the existence of the permutation gr8yms a subgroup of the fundamental group
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m1(Qp) of the configuration spac@,,, but more crucially on how it “sits” inm{(Q,,)." Typically,
for a system oh identical objectsgr(Q,,) has the semidirect product structu?é< S, with X
the semidirect product anél a normal subgroup. Standard representation tHédhen tells us
that quantum statistics is determined not by unitary irreducible representati@s ofit rather
those of the little groupsgor stability subgroupsRC S, with respect to the action d§, on the
space of representations Bf

For most systems the little groups are themselves permutation subd@@qupfsS,, with m
=n. This can be traced to the fact that the normal subgf®uigpgenerated only by the “internal”
symmetry groupK of each object and is simply the product mfcopies ofK. Representation
theory then tells us that the little grodp must be a permutation subgroup®f.”8 For example,
consider a system of 3 identical extended solitons which are allowed to possess spin,te., a 2
rotation of the soliton is nontrivialsee Ref. 9 for an exampleThe permutation group on 3
elementsS; is a subgroup ofr,(Q3) =PX S;, where for concretenesB, can be identified with
the spin subgrouf, X 7, <X 7,, eachZ, factor representing the spin subgroup of a single soliton.
Even though the solitons are classically identical, one can construct the representation
{1/2,1/2,0 of P in which two of the solitons are spin half and the third one is spin zero, thus
rendering it quantum mechanically distinguishable from the others. As one might expect, the little
groupRC S; associated withP is S, and notS;, thus implying 2 rather than 3 particle quantum
statistics.

In this paper, we will explicitly construct a nongravitational example in which the normal
subgroupP does not have a simple product structure, and thus does indeed admit nonpermutation
little groupsRCS,. Namely, we will construct quantum sectors for a system olosed, identical
unknotted rings embedded i?, for which R is a cyclic group, so that the associated quantum
statistics iscyclic. An analogy was made between this system and that BP° geons in 3+ 1
canonical quantum gravity by the authors of Ref. 10; drawing on earlier results of Ref. 2 they
demonstrated the existence of quantum sectors exhibiting indeterminate statisticewBepA
reanalysis of these sectors forFP3 geons shows that this ambiguity is due to the lack of a
canonical exchange operat@Ref. 7). Such indeterminate statistics have also been found for a
system of two particles oRP3.] In Ref. 7 a rigorous analysis of the quantum sectors for a system
of n topological geons in 31 canonical quantum gravity was carried out and the existence of
sectors obeying cyclic, df,, statistics was demonstrated for a systermdtP3 geons. Here, we
will employ techniques developed in Ref. 7 to demonstrate the existence of cyclic stafstics
analogue of cyclic statistics in five-dimensions has been constructed in RdorlBe system of
n=3 closed rings embedded R?. Rings can appear in a wide class of physical systems, ranging
from closed string theory, to cosmic strings, to closed superconducting flux tubes, to name a few.
Recently, the existence of ring-like solitons was shown for certain nonlinear sigma nbais.
existence of kinematical sectors exhibiting novel statistics in such systems may therefore have
nontrivial physical implications.

The inequivalent quantizations for this system of rings are determined by the unitary irreduc-
ible representations of the so-callewbtion groupG which we present in Sec. Il. Using a theorem
due to Goldsmith? combined with the Fuchs—Rabinovitch relations for the automorphisms of the
free product group on elements:* we show tha@ has a nested semidirect product structure. In
Sec. lI, using Mackey'’s theory of induced representatfow® construct quantum sectors which
exhibit cyclic statistics in a system of>2 rings. We end with some brief remarks in Sec. IV on
the question of modeling cyclic statistics using string Lagrangians with topological terms.

Since the spin of the rings we consider is trivial, the sectors obeying cyclic statistics clearly
violate the spin-statistics connection. In Ref. 15 a spin-statistics correlation was shown to hold
when the configuration space is expanded to allow the creation and annihilation of rings, thus
excluding nonpermutation group statistics. However, first quantized systems with ring-like struc-
tures could very well occur in condensed matter systems; as suggested in Ref. 10, the rings can be
stabilized against creation and annihilation by carrying conserved charges. Whether sectors obey-
ing cyclic statistics are physically realized or not is, of course, ultimately a question for experi-
ment to decide.
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IIl. THE MOTION GROUP FOR A SYSTEM OF n RINGS

We consider the system of identical, nonintersecting, infinitely thin, unknotted, unlinked,
unoriented ringsC=C,UC,U---UC, in R3, which cannot be destroyed or created. The con-
figuration space2,, for this system of rings is the space of embedding€ah R* quotiented by
an appropriate group of symmetries called thetion groupG which we will define below. An
obvious example of a symmetry is the exchange of a pair of identical rings. The fundamental
group of Q,, for this system is isomorphic to the motion grodpThis group is nontrivial for all
n=1, and has been extensively studied by Dahm and Goldstith.

Since the configuration spaag, is multiply connected, on quantization, the Hilbert space
splits into inequivalent quantum sectors. A systematic study of such quantum sectors can be found

in Ref. 4. The wave functiong: O,— C, whereQ, is the universal cover of,,, so thatmr;(Q,)

acts nontrivially ony. Since physically measurable quantities like inner products should only be
functions on the classical configuration spagg, the action ofr,(Q,,) on ¢ must be represented

as a “phase,” which can be nonabelian o 2. Thus, at every poinf e Q,,, # is valued in the
carrier spaces of the unitary irreducible representationsrdfQ,,). The inequivalent unitary
irreducible representations af,(Q,,) then correspond to inequivalent quantum sectors.

The motion groupg for this system of rings is defined as followsLet H(R®) denote the
space of continuous maps or homeomorphism&dinto itself andH(R3,C) the subspace of
homeomorphisms which leav@ invariant. LetH..(R®) andH..(R3,C) be subspaces df(R®)
and H(R3,C), respectively, consisting of homeomorphisms with compact suppomofion is
then defined as a path, in H..(R®) such thath, is the identity map fromRk® to itself andh;
=H..(R3,C). The product of two motions can then be defined and the ingrdeof the motion
gisthe patr’g(l_t)ogl‘l.le’ Two motionsh,h’ are taken to be equivalenttif ~h is homotopic to
a path which lies entirely iii..(R3,C). The motion grou is then the set of equivalence classes
of motions of C in R® with multiplication induced by 8" (for brevity of expression we will
henceforth refer to an equivalence class of motions as a motion

We will use Hendricks’ definition of a rotatidhto describe the generators of the motion
group. A 3-ballB3C R® will be said to be rotated by an angtein the following sense: take a
collar neighborhood?x[0,1] of 9 B3~S? and let theS?'s be differentially rotated from 0 ter
with S?x {0} =g 33 rotated bya and S?x{1} not rotated at all. The rotation by an angteof a
solid torusU=B?Xx S' in the direction of its noncontractible circl®* is similarly defined as a
differential rotation of a collar neighborhod® x[0,1] of U ~T?, with T2x{0}= U rotated by
a andT2x {1} not rotated at all.

G is generated by three types of motions which are quite easily visudfiZgu first is the flip
motion f; which corresponds to “flipping” theith ring (in the case of oriented rings, this motion
yields a configuration distinct from the first and is not a symmeffis motion corresponds to a
rotation by 7 of an open ball ink® containingC;, about an axis lying in the plane ;. Since
the rings are embedded in three dimensiciﬁs, e, so that each flip generategasubgroup. Next
is the exchange motiog which exchanges thigh ring with the {+ 1)th ring. This can be thought
of as a rotation of a solid torus iMR® containing bothC; and C;; (but no others These
motions generate the permutation grdgp Finally, one has the slide motia, which requires a
slightly more detailed description. A point in the configuration spéee, R*—C modulo the
action of the motion grougs itself a multiply connected space with (R3— C) isomorphic to the
free product group om generators=(Xq,X,...,X,)~7Zx7*---*7, each factor ofZ isomorphic to
the fundamental group of a single ring Rt¥. s;j is then the motion ofZ; along one of thes&
factors, specifically, the generator B€ (R~ C) passing througl€; . Again, one can define
the slide using a rotation: Consider a solid torus contaifigand “threading” C;, without
intersecting it. A slide is then az2rotation of this solid torus. The existence of slide motions is
key to the present analysis, and is what makes the analogy with the system of topological geons
explicit.

We denote the three subgroups generated by the flips, the exchanges and the stid8s as
ands, respectively. We will also need to identify the subgroug&herated by only the flips and
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the exchanges. The structure $f is known: It is simply the permutation group enelements.
However, the structures ¢f andS need to be deduced, as does information on how these groups
sit in G. While the generators @ have been known for some years, its explicit structure in terms
of these subgroups has not been obtained until now.

Definition: A group G is said to be a semidirect grodpxK if (a) Vge G, dpeP andk
e K such thatg=pk (b) P is normal inG and(c) PNK=e. For every fixecke K, p—kpk™?!
generates an automorphisiy of P. G is said to have a nested semidirect product structure if
further, eitherk or P or both, themselves are semidirect product groups.

We now show thatj has the nested semidirect product structure

G=SX(FXS,). D
We also show thatS is the nonabelian group made up of the free product groum(on-1)
generators
)
n{n—1)
subject to the conditions
SijSkI=SkiSij»  SijSkj= SkjSij»  SikSjkSij = SijSikSjk - ©)

F, on the other hand, can be shown to be the abelian group isomorphic to the direct product group
of the Z, flips of each ring

n

For brevity of notation we define the exchange actigron the set oh integers labeling the
n rings as follows: For £j<n, m;:j—m;(j) wherem;(j)=]j for j#i,i+1, m(i)=i+1 and
mi(i+1)=i. Here wheni=n, i+1 is identified with 1.

Lemma:G has the nested semidirect product structdne Thus,S is normal inG and F is
normal in the subgroup G G generated by the flips and the permutations. The automorphisms of
S generated by @nd those ofF generated bys, are given by the Fuchs—Rabinovitch relations,
induced by the Dahm isomorphisB:. G— GC Aut(F(X4,...X,)) whereAut(F(X,...,X,)) is the
group of automorphisms d¥(x4,...,X,). Moreover,S is isomorphic to the groug?) subject to
the conditions(3), and F is isomorphic to the groups).

Proof: The induced action of the motion group am(R3—C) has been examined by
Goldsmith!® and provides us with a crucial step in deducing the structug éf noted earlier,
m(R3—C) is isomorphic to F(xy,...,X,), the free product group om-generators,x;,
i=1,...n. In Ref. 13 the “Dahm” homomorphisnD:G— Aut(F(x4,...X,)) is defined where
Aut(F(xq,...,X,)) is the group of automorphisms &f(x,,...,X,). For each motioge g, D
induces an automorphism &f(x4,...,X,). The following theorem then states:

Goldsmith's Theorem® The group of motions; of the trivial n-component linkC in R® is
generated by the following types of motions:

(1) f; or flips. Turn theith ring over. This induces the automorphisf:x;—x; *, x,— Xy, k
#i, of F(Xq,....Xp)-

(2) ¢ or exchange. Interchange thth and the {(+1)th rings. The induced automorphism of
F(X1,...X) IS € :X—Xj+1,Xj+1— X andx,=x, for k#i,i+1.

(3) sjj or slides. Pull theith ring through thejth ring. This induces the automorphism; :x;
— XXX, b, X=X, K#EQ, Of F(Xq,... Xp).

Moreover, the Dahm homomorphism; G— Aut(F(Xy,...,X,)) is an isomorphism onto the sub-
group§ of Aut(F(xy,...X,)) generated byp; ,€; and oy, where k<i,j<n,i#]j.
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Let us denote the subgroups@generated by the automorphismng, ¢; ande; asS, F and
S,, respectively. We may now employ the Fuchs—Rabinovitch relation&d¢F (xy, . . . X,))
which provides a complete set of relations for the generatorsﬁéf For m7,(R®-C)
=7*7*---x7, in particular, these relations are simple and imply t?ﬁtAut(F(xl, ....Xy) has
the nested semidirect product structure

G=SX(FXS,)=SX G, (5)

where G= 7S, In particular, the generatos of S, generate the following automorphisms of
F.

€i ¢j6i_1:¢7-ri(j)a (6)
and the generatorg and ¢; of G generate the following automorphismsﬁf
-1_
€ TkE T Om(j)m(k) »
GO = VKL 7

¢|UJ|¢| |

Moreover, these relations imply tha§ is the free product group om(n—1) generators
7x7* - - -7 subject to the conditions;; oy = o0} , Tij0;= 0yjTij , and(rlk(rjka'” —a'llolka'Jk
while F is the abelian direct product group made upnofactors onz, F=17yX71yX sz
SinceD is an |somorph|sm WltrD(S)CS D(}“)C}‘ and D(Sn)cs1 this means thaf~S, F
~F and S\~ Sn From (5), it is then obvious thatj itself has the nested semidirect product
structure(1). The automorphisms @&, on F and of Gon S, respectively, are given bi) and(7)
and induced by the isomorphis®:G—G. Moreover,S is the free product group on(n—1)
generators/* 7 - - - x 7, subject to the relation&) and F is given by(4). O

While the structure of the motion group can be completely deduced from the Dahm homo-
morphism and the Fuchs—Rabinovitch relations, it is instructive to examine this group without

recourse tAAut(F(x,, ... X,)). Using just the definition of the motion group we now illustrate
the following properties 0f: (a) S is normal inG and satisfies the relatiori8) and(b) that F is
normal in G

By definition, an element of the motion group is a homotopy equivalence class of paths in the
space of homeomorphisms with compact support. Two homeomorphisarsdh, with compact
support on the regions; andU, commute ifU;NU,= ¢ and hence so do the corresponding
motions. It is, therefore, useful to isolate the “minimal” neighborhoods in which homeomor-
phisms representing the generators of the motion group act so as to determine which two motions
commute.

Let U; denote an open ball neighborhood®@fin R* which contains no othet;, j#i, and
let U;; denote an open ball neighborhood@fU C; containing no otheCy, k#i,j, etc. We will
refer to theU; as “exclusive” neighborhoods and the;; ,Ujjx ,..., etc. as “common” neighbor-
hoods. The fI|p motiorf; is then defined by a homotopy equwalence class of paths.iiR®)
which include a “model” path made up of homeomorphisms with support only pni.e., a path
in H..(R®) along whichC; is flipped without disturbing any of the other rings. Next, the exchange
motione; is defined by a homotopy equivalence class of paths including a model path made up of
homeomorphisms with support only &f ), i.e., theith and the (+1)th ring are exchanged
without disturbing the other rings. Finally, the slidgs are defined by a homotopy equivalence
class of paths including a model path with support onlyen, i.e., a path in which the other rings
are not disturbed.
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FIG. 1. Under the slide;; C; “tunnels” through the neighborhood; of C; and maps it onto the regiow; , shown by
dashed linesV;, therefore, “enclosesC; without containing it, i.e.U;NV;=¢.

Now, the set of exclusive neighborhoofld;} remains invariant when acted upon by the
subgroup Ggenerated by the flips and by the exchanges. This is obvious,fsince each fliff;
acts within an exclusive neighborhood. Fgy, while the exchange; has compact support on
Uii+1), its action can be considered as a pure exchangk wofith U;, ;. Thus, one can consider
as a model path for the exchange, a localizedotation in U;;, 1) which exchangesJ; with
Ui, ;. This, however, is not the case with the slidgs. While the seff{U,} for k#]j remains
invariant under the slide;; of C; throughC;, the exclusive neighborhood; does not. The
nonlocal action of the slide takes; into a setV; which “encloses”C; even though it does not
contain it, i.e., there exists @; such thatU;NV;=¢ (see Fig. 1 Thus,V; is not an exclusive
neighborhood ofC; . This feature leads to subtleties in what follows.

Since the exchanges and the flips leave thédgtinvariant, model paths are sufficient to see
that F is normal inG i.e., for allge G, i=<n, §f;g e F. To show this, it is sufficient to take
to be an exchange. For the motierfjei‘1 with j#i,i+1, the model paths foe; and f; have
compact support otJ;; .1y and U;, respectively, wherdJ;;,,)NU;=¢. Hence the motions
commute, so thagfje '=f;. Now consider the motiore;f;e; *. The model paths for *
exchangeJ; with U;, ;. One can then use a model path for the motiprvhich acts on some
U/,,CU;, 1 so that the final exchangg which exchange#;,, with U; does not disturb the
action off; onU/, ;. Thus,ef,e; '=f;,,. Similarly, g, e *=f,.

However, model paths are insufficient when one wants to deal with the slides. Let us consider
a motion whose model path involves homeomorphisms with support only on the compact region
U. The homotopy class of paths defining this motion also includes the nonmodel, or “gregarious”
paths, which involve homeomorphisms with nontrivial compact supporfidrU. In other
words, gregarious pathsan disturb the other rings; they can contain homeomorphisms with
nontrivial support on neighborhoods of rings left undisturbed by the model path. Consider the
motion f; for simplicity. A model path forf; has support only otJ; and corresponds to &
rotation about an axis in the plane 6f. A gregarious path on the other hand can be constructed
piecewise as followsta) RotateC; by 7/3, about an axix in its plane;(b) flip anotherC;, j
#i; (c) rotateC; by a furtherw/3 aboutXk in the same sense as befofd) flip C; again;(e) and
complete with a furthetr/3 rotation ofC; aboutk in the same sense as before. Such a path clearly
corresponds to the motiof, but involves homeomorphisms &f in H..(R%) which have non-
trivial support on the ringC;, j#i.

Both model and gregarious paths are necessary to demonstratg ithabrmal inG. S is a
normal subgroup oG if Yge G and Vi,j<n gsjgfles. It is sufficient to takeg to be a
generator of Sor F.

We begin with the exchanges. Let us examine the mcﬁksr}ek ! by considering only model
paths in the appropriate homotopy class. Kefi,j eks,Jek =sjj, since the homeomorphisms
that make up model paths f@& ands;; have compact supports doy, and Uj; with UkﬂUu
= ¢. Model paths are, however, |nsuff|C|ent to show tb,ajek |s also a sllde fok=i,i—1,j
or j—1. Consider the motio®;s;; €, Lwith k=j, i#j,j+1. e swapsU with U, 4 by am
rotation of a torus containing botdl; andUj, ;. Next, s;; rotates by zZra SO|Id torus containing
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Ci and threadingC;, ,, thus mappingJ;,, into a nonexclusive neighborhodd ,,. A model
path for the final exchangg would rotate by a solid torus containing new exclusive neighbor-
hoodU;; of Cj,1 andU;. U1 in which the slide acts, is not left invariant by this final
exchange, making the resultant motion difficult to unravel. Instead, we use the following gregari-
ous path to perform the final exchange: consider a patH.iGR®) where U;(; 1) and U; are
swapped by performing an appropriateotation in the common neighborhoddj; ;. ;) of C; ,C;
andC; ;. The final exchange motion is then completed by merely mo@nback to its original
position. U ;1) is thus left undisturbed so that the full motion is the slg&lg, 1). A use of a
similar gregarious path for the final exchange shows ﬂe*@itl)s”e(J 1= Si(j-1), €iSij€; -1
=S(i+1)) AN € 1)S€(1)= Sy -

Next, consider the flips. The motldms”fk can again be examined using only model paths
for k#j, and we can see that it & . This is because the model path ferhas compact support
only on U, which is undisturbed by the slide even whieri. However, the use of model paths
is insufficient to examine the motioi]sijfj’l: not only doesU; not remain an exclusive neigh-
borhood under the slidg; , but thef; moves the points itJ; relative to each other. Rather than
consider just a single gregarious path, following Ref. 7, we use a particular set of homotopy
equivalent paths. Let be the generator of;(R3—C) throughC; about which the slids;; takes
C;. We define the pathy, as follows:(a) perform a “part” inverse flip corresponding to ar(

— a) rotation ofC; aboutX (b) slide C; throughC; along « 1 (c) finish the inverse fIi|o‘J-_1 of C;

by a rotationa aboutX and (d) finally, perform the flipf; of C; aboutX. y, then corresponds to

the model path for the motiofys;; f; Y while the pathy,, corresponds to the S|Idi$ . Sincea is

a continuous parametere [ 0,7], the v, provide a homotopy map fromg to v, wh|ch implies

that fjsijfj’lzsijl (it is perhaps a useful exercise for the reader to see why a similar argument
cannot be used to find a set of homotopic paths betvsgép;ﬁl and an element af).

Thus, the slide subgroug is a normal subgroup df.

We can also demonstrate that the relati@)sare satisfied bys, using just the definition of the
motion group. The first of these relations is clearly satisfied by the generatSysioice the model
paths corresponding to the slidgs andsy, involve homeomorphisms with compact support only
onU;; andU,, whereU;; NUy = ¢. It takes a little more work to show that the other two relations
are also satisfied by the generatorsS‘of

Consider the motlorsuskjsIJ sij andsy; are slides of the two ring€; and C, through a
third ring C; . These slides are obtained byr 2otations of the solid torV;; ~B2x st and A
~B?x St WhICh thread througiC;, with V;;NV,;=¢. Define the pathSya as follows: (a) A
rotation by — « of Vj; ; (b) a 2m rotation ofVyj; () a—(27—a) rotat|on ofV;j; and finally;(d)

a 2m rotation ofV;; . y, then defines a model path for the motigysy;s;; ~, andy,, corresponds
to the slidesy;. Sincea is a continuous parametey, is homotoplc t0727, and hence also
corresponds tgy; . Notice that by keepiny;; NV ;= ¢ we prevent a mixing of their rotations and
hence the deformations of the nelghborhdtdajdby sij and bysy;.

Next, consider the motios;;s;,SjcS;; ~ - Although this looks considerably more complicated
than the previous motion, the two eIementsS’dhvoIved,siksjk ands;; , have compact supports
on nonintersecting neighborhoods. Namely, the elersgsj corresponds to slidinG; through a
generatorp of m; of C, and then slidingC; through the same generator. Under this actidp,
—U; andU;—U;, while Uy is now mapped to a regiov, which now “encloses” bothC; and
C;. Thus, there exists a path .. (R®) corresponding to the motios),s;, made up of homeo-
morphisms which leave the common neighborhabd undisturbed. Since there is a model path
corresponding to the slidg; which has compact support only ds;, this means that the two
motionss;sj, ands;; indeed commute. Thus, the generatorsScfatisfy all the relations3).

Remark:In Ref. 10 a set of relations for the generators in he2 case was g|ven‘2 £?
=(f;£)*=(f; Eslé')z—e wherei =1,2 and the slides; generateS, the flipsf; generateF and the
exchangef generatess,. These follow in a straightforward manner from the relations presented
above.
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lll. CYCLIC STATISTICS

The inequivalent quantum sectors for our system a@fentical rings are labeled by the unitary
irreducible representations af;(Q,)~G. The groupg represents a “gauge” symmetry and the
action of the individual motiong e G on R*—C can be used to interpret the associated quantum
phases.

Let us begin by considering the simplest case, namely a single ring for which the motion
group 7,(Q) is simply F=7,. Let ; be a wave function o® with localized support along the
fibre{G,,9,} atqe Q, generated by the action of the flipi.e.,§,—T,=fq,. Under the action
of f, ¥1— ¢, which is also localized on the fibre gt Since wave functions take values in the
carrier spaces of the irreducible representationsrdfQ), ,=A(f)°y, whereA is a unitary
irreducible representation af=7,. A can be either the trivial representatidr(f)=1 or the
nontrivial one withA(f)=— 1, the associated quantum sectors corresponding to either an “unori-
ented” quantum ring in whichy,=4¢; or an “oriented” quantum ring in which,
=—. (Recall that classically, the rings are unoriented, since flips are a symmetry of the clas-
sical configuration spageWhen there are two rings, i.en=2, the motion group includes the
permutation grouS,=7, which gives rise to nontrivial quantum statistics. Consider a wave
function ¢ which is localized along the fibre of a configuration where the two rings are well-
separated and identical: Under an exchange operatjotherefore, picks up a phase dfl
corresponding to bosonic/fermionic quantum statistgee Refs. 2, 4, and 7 for a more detailed
discussion of quantum phases and statistics for extended gbjastsve will presently demon-
strate, forn>2 the existence of the slide subgroup#n(Q,) gives rise to an unexpected com-
plexity in the structure of the phases acquired by the wave function under the action of the
permutation group.

As mentioned in the introduction, the quantum statistics of a system is not solely determined
by S, , but rather by the unitary irreducible representations of its stability subgRO®y asso-
ciated with its action on the unitary irreducible representations of the normal sub§rojof G.

This follows from Mackey’s theory of induced representations for semidirect product groups

P K.® In this construction, one begins with the space of unitary irreducible representatiohs
the normal subgroup. The subgrougK has the(not necessarily fréeaction onP

A(p)—A(p)=A(kpk ™), 8

where AcP, peP and keK. Starting with a particularA; € P one obtains an orbi®
={A;,A,,... A,} of theK action onP, and the little groupR associated witl®. The full unitary
irreducible representation ¢¥X K is then built up by taking the direct product @) [A;® A,
@&---®A,] with (b) a unitary irreducible representation &:. For example, if one starts with the
trivial representation ofP, then the orbit consists of a single point aft=K. The unitary
irreducible representations &fX K that can be constructed from this orbit are just the unitary
irreducible representations ¢f. On the other hand, one may find an orbitkfin P with R
=e. The full unitary irreducible representation is then simply the sum of the unitary irreducible
representations in the orbig;A;. The action of the subgrouid is then reduced to a canonical
map which permutes the carrier spadesf A;’ (as discussed in Ref. 7 for=4 the possibility
of projective statistics exists whem, (Q) has a semidirect product structure

We now illustrate the importance of the little group in determining quantum statistics with a
simple example. Because of the nested semidirect product structure of the motion group, we may
begin by first representing the slides trivially. We thus need to find only the unitary irreducible
representations of the subgroup=G1x S,. Since F~7,XZ,X --+XZ, with n Z, factors, it is
trivial to list its unitary irreducible representations, i.A=(k,k,,... K,), with k;==*1. For
example, forn=3, let us start with the unitary irreducible representatlor=(—,—,+) of the
normal subgroupF of G. This choice corresponds to two of the rings being identical and oriented,
while the third is unoriented and hence distinguishable from the others. The act®noofA ;
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generates the orbftA;,A,,As}={(—,—,+),(+,—,—),(—,+,—)} in F whose associated little

group isS,. The resulting unitary irreducible representation ofisGthen {A;®A,® Az} oT,
wherel is a unitary irreducible representation $f. Under a two particle exchandé provides
either a bosoni¢+1) or a fermionic(—1) phase. Since one of the three rings has been rendered
guantum mechanically distinguishable from the other two, one obtains an appropriate two ring
statistics. The action of the remaining elementsSgf namely the cyclic elements, is canonical:
They merely permute the carrier spa¢gsf the A;. This general structure continues to hold for
all n, and is illustrative for the case of primary interest here when the slides are nontrivially
represented.

Before proceeding to construct a quantum sector exhibiting cyclic statistias=f@;, let us
consider the simplest case with the slides nontrivially represented, namely m#h&n For n
=2, the slide subgroup is generated by the two slgles,, the flip subgroupF by the two flips
f,,f, and the permutation group, by the exchang&. The following example demonstrates a
peculiar feature which will reappear for>2, whereby slides render a pair of “locally identical”
rings distinguishable. Let us start with the abelian unitary irreducible representatid) of
Q4(s1)=1,Q4(s;) = —1. The action off; onQ, is Ql(si)—f()l(si)=Ql(fjsifj’l)=Ql(si) and
is hence contained in the little grouR of G. Under the action off, Q(s)— Q4(s)
=Ql(€si5‘1)=Ql(sj)¢ﬂl(si) wherej#i, so thatS,CR. Thus, the two rings are quantum
mechanically distinguishable eveniis trivially represented. This is very unusual, since indis-
tinguishability of a collection of objects is often thought of as a local, intrinsic property of each
object. However, in this representation, it is the nonlocal action of slides which renders the two
rings distinguishable: The rings slide through each other differently. Thus, there exists a wave
function ¢ localized along the fibre of a configuration of two well-separated identical rings such
that under the action o§;, ¥— ¢ and under that of,, ¢— —. This quantum lifting of
indistinguishability by slides is key to the existence of nonpermutation group statistios>far

We are now ready to demonstrate cyclic statistics for the case=d3 rings. The slide
subgroupsS is generated by the six generateys, i,j=1,2,3,i# |, the flip subgroupF is gener-
ated by the 3 elemenfs,f,,f3, and the permutations form the nonabelian subgi®yup/Ne start
with the following abelian unitary irreducible representation of S:

01(812) = Q1(S29) = Qy(s3) = =1, Q1(S21) = Q1(S32) = Qy(S19) = 1. )

Consider the action of Gn Q,. The action of a flipf, on Q, for k=i or j is: Q4(sjj)

— Q4 (fisi D =07 '(si;) = Qa(s;;), while the action of,, k#1i,j is trivial. Thus,F lies in the
stability subgroup of GSingle exchanges, however, do not leav€; invariant: For example,
Q1(Sii+1) = Qa(EiSi+ e D= Q4(Si+1)) = — Qa(Si¢i+1)) (Where (+1) is defined mod B
However, a pair of exchanges does le&vginvariant! A pair of exchanges, saye,e;, gener-
ates the cyclic subgroufZ; of S;. Under the action ofe,e; the slides{s;,,S,3,S31}
—{S53,531,S12}, and{S,1,S3,,S13t—{S32,513,521}, thus leaving(}, invariant. Therefore, the sta-
bility subgroup associated @, is FX Z3. The remaining elements gfX S;, namelye; ,e,, and

e; generate the two element ortlft={Q,,Q,} in S the space of unitary irreducible representa-
tions of S, where

Q5(812) = Qo(S23) = Qp(S3) =1, Q(S21) =N(S30) =N(S13) = — 1. (10

The associated unitary irreducible representatioy; & therefore nonabelian, and can be sym-
bolically expressed as

(2,90,)®7, (11

where7 is a unitary irreducible representation of the stability subgrétZs;.
Let us for simplicity consider the case whénis trivially represented irZ; so that7 is a
unitary irreducible representation @§. 73 has two nontrivial inequivalent unitary irreducible
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representation&) z— e?™"® and(b) z—e*™'3, Thus, wave functions, , i, on Q5 take values in

the (two-dimensional carrier spacesl, and 1l of the corresponding quantum sectorsylf,, are
localized along the fibre of a configuration of well separated identical rings, under the action of the
cyclic permutations they pick up the respective phaggs-e?™3y, and y,—e*™3yy,. Thus,

these sectors exhibit a cyclic, nonpermutation group, statistics: the rings are identicalhen
permuted by a cyclic combination, ambt under pair-wise exchange! This is indeed a very
curious behavior and is again linked to the nonlocality of slide motions: even though the flips are
all trivially represented the slides render the rings pair-wise distinguishable but cyclically indis-
tinguishable. We say that the rings obgy cyclic statistics

The case for arbitrarym>2 follows in a straightforward manner. Namely, we can always
isolate a pair of nontrivial subsets from the set of slide generdyf and {sg} which are
invariant underZ,. There is a small difference in the construction in the emer2m and odd
n=2m+1 cases. Fon=2m, 7, contains the subgroup,; if z is the generator of,,, with
z°™=e, thenz™ generates &, subgroup corresponding th commuting exchanges. One can then
see that the two sets of generat@sg} and{sg} which are invariant undet,,, have cardinality
2m(m—1) and 2n?, respectively. Fon=2m+1, Z, is not a subgroup of,,, ;. Hence the two
sets of generators,} and{sg} each have cardinalityn(2m+1). One can thus obtaif, cyclic
statistics for arbitraryn> 2.

We end this section by commenting on the possibility that sectors with more complicated
nonpermutation group statistics may exist. To construct the above cyclic statistics sectors we
started with very simple abelian unitary irreducible representations of the slide subgroup. It is
conceivable that if one instead started with a nonabelian unitary irreducible representafion of
(with certain symmetrigsthat the stability subgrouix K associated with it is such th#& is
nonabelian and a nonpermutation subgrouf,of Such a sector would then exhibinanabelian,
nonpermutatiorgroup statistics. Our current work provides a framework in which to probe such
questions.

IV. REMARKS

Anyonic statistics in 2-1 dimensions can be modeled by adding a Chern Simon'’s term to the
n particle Lagrangiaf! In Ref. 10 a stringy generalization of this was developed to obtain
nontrivial phases from the action of the motion group, nameB/'&- topological term made up
of an abelian gauge field and an axion field was added tm thiging Lagrangian along with an
interaction term. Similar systems have subsequently been studied in Ref. 18. In Ref. 10 it was
shown that even though the statistical phases are triuial bosonig the action of the slide
subgroup is nontrivial, giving rise to fractional quantum phases. Since slides involve the motion of
one ring through a nontrivial generator of the fundamental group of another ring, these fractional
phases correspond to Aharnov—Bohm phases rather than to fractional quantum statistics. Indeed,
slides can occur between nonidentical particles as well and hence the interpretation of such phases
as statistics in Ref. 18 seems questionable. Since cyclic statistics occur in nonabelian sectors of the
system, it would be interesting to construct appropriate nonabelian generalizations of Ref. 10
which exhibit this behavior. We leave this problem to future investigations.
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