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The existence of anyons in two-dimensional systems is a well-known example of
nonpermutation group statistics. In higher dimensions, however, it is expected that
statistics is dictated solely by representations of the permutation group. Using basic
elements from representation theory we show that this expectation is false in three-
dimensions for a certain nongravitational system. Namely, we demonstrate the ex-
istence of ‘‘cyclic,’’ or Zn , nonpermutation groupstatistics for a system ofn.2
identical, unknotted rings embedded inR3. We make crucial use of a theorem due
to Goldsmith in conjunction with the Fuchs–Rabinovitch relations for the automor-
phisms of the free product group onn elements. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1738189#

I. INTRODUCTION

It is a well-established fact that the topology of the configuration space of a classical system
can have a nontrivial effect on its quantization. A simple illustration of this is found in the
sum-over-histories quantization of a particle on a circle wherein the set of paths with fixed initial
and final positions fall into classes labeled by the winding numberm.1 The full partition function
is expressed as a sum of partitions over these different classes of paths, each multiplied by an
overall phaseeimu, whereuP@0,2p# labels the unitary irreducible representations of the funda-
mental groupZ of the circle. Each choice ofu thus leads to an inequivalent quantization of the
system. In general, inequivalent quantizations of a classical system are labeled by the unitary
irreducible representations of the fundamental group of the configuration space. Indeed, several
phenomena of physical interest ranging from the quantum statistics of point particles, to a Hamil-
tonian interpretation of the QCD theta angle, to spinorial states in quantum gravity, can be attrib-
uted to such inequivalent quantizations.2–6

The particular phenomenon of interest to us in this paper is the emergence of quantum
statistics in systems ofn identical objects. For spatial dimensionsd.2, the fundamental group of
the configuration space of such systems contains the permutation group onn elementsSn as a
subgroup. For typical systems, the unitary irreducible representations ofSn and its permutation
subgroups are sufficient to determine quantum statistics. Forn52, d.2, for example, the permu-
tation groupS2 generated by the exchange operationE has two inequivalent unitary irreducible
representations: The trivial one (E→1) corresponds to bose statistics and the nontrivial one (E
→21) corresponds to fermi statistics. Forn.2, d.2, Sn has nonabelian unitary irreducible
representations which give rise to parastatistics. In dimensiond52, however, statistics is dictated
by a nonpermutation infinite discrete group called the braid groupBn , rather than the finite group
Sn . The resulting statistics is referred to as ‘‘anyonic’’ and plays a central role in the study of
two-dimensional systems.5,6

Since the permutation groupSn is always a subset of the fundamental group of the configu-
ration space ford.2, it is generally believed that quantum statistics is dictated by a nonpermu-
tation group only in two-dimensions. However, ford.2 quantum statistics does not merely
depend on the existence of the permutation groupSn as a subgroup of the fundamental group
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p1(Qn) of the configuration spaceQn , but more crucially on how it ‘‘sits’’ inp1(Qn).7 Typically,
for a system ofn identical objects,p1(Qn) has the semidirect product structureP›Sn , with ›

the semidirect product andP a normal subgroup. Standard representation theory7,8 then tells us
that quantum statistics is determined not by unitary irreducible representations ofSn , but rather
those of the little groups~or stability subgroups! R#Sn with respect to the action ofSn on the
space of representations ofP.

For most systems the little groups are themselves permutation subgroupsSm of Sn , with m
<n. This can be traced to the fact that the normal subgroupP is generated only by the ‘‘internal’’
symmetry groupsK of each object and is simply the product ofn copies ofK. Representation
theory then tells us that the little groupR must be a permutation subgroup ofSn .7,8 For example,
consider a system of 3 identical extended solitons which are allowed to possess spin, i.e., a 2p
rotation of the soliton is nontrivial~see Ref. 9 for an example!. The permutation group on 3
elements,S3 is a subgroup ofp1(Q3)5P›S3 , where for concreteness,P can be identified with
the spin subgroupZ23Z23Z2 , eachZ2 factor representing the spin subgroup of a single soliton.
Even though the solitons are classically identical, one can construct the representation
$1/2,1/2,0% of P in which two of the solitons are spin half and the third one is spin zero, thus
rendering it quantum mechanically distinguishable from the others. As one might expect, the little
groupR#S3 associated withP is S2 and notS3 , thus implying 2 rather than 3 particle quantum
statistics.

In this paper, we will explicitly construct a nongravitational example in which the normal
subgroupP does not have a simple product structure, and thus does indeed admit nonpermutation
little groupsR,Sn . Namely, we will construct quantum sectors for a system ofn closed, identical
unknotted rings embedded inR3, for which R is a cyclic group, so that the associated quantum
statistics iscyclic. An analogy was made between this system and that ofn RP3 geons in 311
canonical quantum gravity by the authors of Ref. 10; drawing on earlier results of Ref. 2 they
demonstrated the existence of quantum sectors exhibiting indeterminate statistics whenn52. @A
reanalysis of these sectors for 2RP3 geons shows that this ambiguity is due to the lack of a
canonical exchange operator~Ref. 7!. Such indeterminate statistics have also been found for a
system of two particles onRP3.] In Ref. 7 a rigorous analysis of the quantum sectors for a system
of n topological geons in 311 canonical quantum gravity was carried out and the existence of
sectors obeying cyclic, orZn statistics was demonstrated for a system ofn RP3 geons. Here, we
will employ techniques developed in Ref. 7 to demonstrate the existence of cyclic statistics~an
analogue of cyclic statistics in five-dimensions has been constructed in Ref. 12! for the system of
n>3 closed rings embedded inR3. Rings can appear in a wide class of physical systems, ranging
from closed string theory, to cosmic strings, to closed superconducting flux tubes, to name a few.
Recently, the existence of ring-like solitons was shown for certain nonlinear sigma models.11 The
existence of kinematical sectors exhibiting novel statistics in such systems may therefore have
nontrivial physical implications.

The inequivalent quantizations for this system of rings are determined by the unitary irreduc-
ible representations of the so-calledmotion groupG which we present in Sec. II. Using a theorem
due to Goldsmith,13 combined with the Fuchs–Rabinovitch relations for the automorphisms of the
free product group onn elements,14 we show thatG has a nested semidirect product structure. In
Sec. III, using Mackey’s theory of induced representations,8 we construct quantum sectors which
exhibit cyclic statistics in a system ofn.2 rings. We end with some brief remarks in Sec. IV on
the question of modeling cyclic statistics using string Lagrangians with topological terms.

Since the spin of the rings we consider is trivial, the sectors obeying cyclic statistics clearly
violate the spin-statistics connection. In Ref. 15 a spin-statistics correlation was shown to hold
when the configuration space is expanded to allow the creation and annihilation of rings, thus
excluding nonpermutation group statistics. However, first quantized systems with ring-like struc-
tures could very well occur in condensed matter systems; as suggested in Ref. 10, the rings can be
stabilized against creation and annihilation by carrying conserved charges. Whether sectors obey-
ing cyclic statistics are physically realized or not is, of course, ultimately a question for experi-
ment to decide.
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II. THE MOTION GROUP FOR A SYSTEM OF n RINGS

We consider the system ofn identical, nonintersecting, infinitely thin, unknotted, unlinked,
unoriented rings,C5C1øC2 ø•••øCn in R3, which cannot be destroyed or created. The con-
figuration spaceQn for this system of rings is the space of embeddings ofC in R3 quotiented by
an appropriate group of symmetries called themotion groupG which we will define below. An
obvious example of a symmetry is the exchange of a pair of identical rings. The fundamental
group ofQn for this system is isomorphic to the motion groupG. This group is nontrivial for all
n>1, and has been extensively studied by Dahm and Goldsmith.13

Since the configuration spaceQn is multiply connected, on quantization, the Hilbert space
splits into inequivalent quantum sectors. A systematic study of such quantum sectors can be found

in Ref. 4. The wave functionsc:Q̃n→C, whereQ̃n is the universal cover ofQn , so thatp1(Qn)
acts nontrivially onc. Since physically measurable quantities like inner products should only be
functions on the classical configuration spaceQn , the action ofp1(Qn) on c must be represented
as a ‘‘phase,’’ which can be nonabelian forn>2. Thus, at every pointqPQn , c is valued in the
carrier spaces of the unitary irreducible representations ofp1(Qn). The inequivalent unitary
irreducible representations ofp1(Qn) then correspond to inequivalent quantum sectors.

The motion groupG for this system of rings is defined as follows.13 Let H(R3) denote the
space of continuous maps or homeomorphisms ofR3 into itself andH(R3,C) the subspace of
homeomorphisms which leaveC invariant. LetH`(R3) and H`(R3,C) be subspaces ofH(R3)
and H(R3,C), respectively, consisting of homeomorphisms with compact support. Amotion is
then defined as a pathht in H`(R3) such thath0 is the identity map fromR3 to itself andh1

5H`(R3,C). The product of two motions can then be defined and the inverseg21 of the motion
g is the pathg(12t)+g1

21.13 Two motionsh,h8 are taken to be equivalent ifh821h is homotopic to
a path which lies entirely inH`(R3,C). The motion groupG is then the set of equivalence classes
of motions of C in R3 with multiplication induced by ‘‘+’’ ~for brevity of expression we will
henceforth refer to an equivalence class of motions as a motion!.

We will use Hendricks’ definition of a rotation16 to describe the generators of the motion
group. A 3-ballB3,R3 will be said to be rotated by an anglea in the following sense: take a
collar neighborhoodS23@0,1# of ] B3'S2 and let theS2’s be differentially rotated from 0 toa
with S23$0%5] B3 rotated bya andS23$1% not rotated at all. The rotation by an anglea of a
solid torusU5B23S1 in the direction of its noncontractible circleS1 is similarly defined as a
differential rotation of a collar neighborhoodT23@0,1# of ]U'T2, with T23$0%5]U rotated by
a andT23$1% not rotated at all.

G is generated by three types of motions which are quite easily visualized.13 The first is the flip
motion f i which corresponds to ‘‘flipping’’ thei th ring ~in the case of oriented rings, this motion
yields a configuration distinct from the first and is not a symmetry!. This motion corresponds to a
rotation byp of an open ball inR3 containingCi , about an axis lying in the plane ofCi . Since
the rings are embedded in three dimensions,f i

25e, so that each flip generates aZ2 subgroup. Next
is the exchange motionei which exchanges thei th ring with the (i 11)th ring. This can be thought
of as ap rotation of a solid torus inR3 containing bothCi and Ci 11 ~but no others!. These
motions generate the permutation groupSn . Finally, one has the slide motionsi j which requires a
slightly more detailed description. A point in the configuration space~i.e., R32C modulo the
action of the motion group! is itself a multiply connected space withp1(R32C) isomorphic to the
free product group onn generatorsF(x1 ,x2 ...,xn)'Z* Z* •••* Z, each factor ofZ isomorphic to
the fundamental group of a single ring inR3. si j is then the motion ofCi along one of theseZ
factors, specifically, the generator ofZ,p1(R32C) passing throughCj . Again, one can define
the slide using a rotation: Consider a solid torus containingCi and ‘‘threading’’ Cj , without
intersecting it. A slide is then a 2p rotation of this solid torus. The existence of slide motions is
key to the present analysis, and is what makes the analogy with the system of topological geons
explicit.

We denote the three subgroups generated by the flips, the exchanges and the slides asF, Sn

andS, respectively. We will also need to identify the subgroup G˜ generated by only the flips and
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the exchanges. The structure ofSn is known: It is simply the permutation group onn elements.
However, the structures ofF andS need to be deduced, as does information on how these groups
sit in G. While the generators ofG have been known for some years, its explicit structure in terms
of these subgroups has not been obtained until now.

Definition: A group G is said to be a semidirect groupP›K if ~a! ;gPG, 'pPP and k
PK such thatg5pk ~b! P is normal inG and ~c! PùK5e. For every fixedkPK, p→kpk21

generates an automorphismak of P. G is said to have a nested semidirect product structure if
further, eitherK or P or both, themselves are semidirect product groups.

We now show thatG has the nested semidirect product structure

G5S›~F›Sn!. ~1!

We also show thatS is the nonabelian group made up of the free product group onn(n21)
generators

~2!

subject to the conditions

si j skl5sklsi j , si j sk j5sk jsi j , siksjksi j 5si j siksjk . ~3!

F, on the other hand, can be shown to be the abelian group isomorphic to the direct product group
of the Z2 flips of each ring

~4!

For brevity of notation we define the exchange actionp i on the set ofn integers labeling the
n rings as follows: For 1< j <n, p i : j→p i( j ) wherep i( j )5 j for j Þ i ,i 11, p i( i )5 i 11 and
p i( i 11)5 i . Here wheni 5n, i 11 is identified with 1.

Lemma:G has the nested semidirect product structure~1!. Thus,S is normal inG andF is
normal in the subgroup G˜ , G generated by the flips and the permutations. The automorphisms of
S generated by G˜ and those ofF generated bySn are given by the Fuchs–Rabinovitch relations,
induced by the Dahm isomorphismD:G→Ḡ#Aut(F(x1 ,...,xn)) whereAut(F(x1 ,...,xn)) is the
group of automorphisms ofF(x1 ,...,xn). Moreover,S is isomorphic to the group~2! subject to
the conditions~3!, andF is isomorphic to the group~4!.

Proof: The induced action of the motion group onp1(R32C) has been examined by
Goldsmith,13 and provides us with a crucial step in deducing the structure ofG. As noted earlier,
p1(R32C) is isomorphic to F(x1 ,...,xn), the free product group onn-generators,xi ,
i 51,...,n. In Ref. 13 the ‘‘Dahm’’ homomorphismD:G→Aut(F(x1 ,...,xn)) is defined where
Aut(F(x1 ,...,xn)) is the group of automorphisms ofF(x1 ,...,xn). For each motiongPG, D
induces an automorphism ofF(x1 ,...,xn). The following theorem then states:

Goldsmith’s Theorem:13 The group of motionsG of the trivial n-component linkC in R3 is
generated by the following types of motions:

~1! f i or flips. Turn thei th ring over. This induces the automorphismf i :xi→xi
21 , xk→xk , k

Þ i , of F(x1 ,...,xn).
~2! ei or exchange. Interchange thei th and the (i 11)th rings. The induced automorphism of

F(x1 ,...,xn) is e i :xi→xi 11 ,xi 11→xi andxk5xk for kÞ i ,i 11.
~3! si j or slides. Pull thei th ring through thej th ring. This induces the automorphisms i j :xi

→xjxixj
21 , xk→xk , kÞ i , of F(x1 ,...,xn).

Moreover, the Dahm homomorphism,D:G→Aut(F(x1 ,...,xn)) is an isomorphism onto the sub-
group Ḡ of Aut(F(x1, ...,xn)) generated byf i ,e i ands i j , where 1< i , j <n,iÞ j .
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Let us denote the subgroups ofḠ generated by the automorphismss i j , f i ande i asS̄, F̄ and
S̄n , respectively. We may now employ the Fuchs–Rabinovitch relations forAut(F(x1 , . . . ,xn))
which provides a complete set of relations for the generators ofḠ.14 For p1(R32C)
5Z* Z* •••* Z, in particular, these relations are simple and imply thatḠ,Aut(F(x1 , . . . ,xn)) has
the nested semidirect product structure

Ḡ5S̄›~F̄›Sn!5S̄›GS , ~5!

where GS 5F̄›Sn . In particular, the generatorse i of Sn generate the following automorphisms of
F̄:

e if je i
215fp i ( j ) , ~6!

and the generatorse i andf i of GS generate the following automorphisms ofS̄:

e is jke i
215sp i ( j )p i (k) ,

f is jkf i
215s jk ,;kÞ i , ~7!

f is j i f i
215s j i

21 .

Moreover, these relations imply thatS̄ is the free product group onn(n21) generators
Z* Z* •••* Z subject to the conditionss i j skl5skls i j , s i j sk j5sk js i j , ands iks jks i j 5s i j s iks jk

while F̄ is the abelian direct product group made up ofn factors ofZ2 , F̄5Z23Z23•••3Z2 .
SinceD is an isomorphism withD(S)#S̄, D(F)#F̄ andD(Sn)#S̄n , this means thatS'S̄, F
'F̄ and Sn'Sn. From ~5!, it is then obvious thatG itself has the nested semidirect product
structure~1!. The automorphisms ofSn on F and of G̃on S, respectively, are given by~6! and~7!

and induced by the isomorphismD:G→Ḡ. Moreover,S is the free product group onn(n21)
generatorsZ* Z* •••* Z subject to the relations~3! andF is given by~4!. h

While the structure of the motion group can be completely deduced from the Dahm homo-
morphism and the Fuchs–Rabinovitch relations, it is instructive to examine this group without
recourse toAut(F(x1 , . . . ,xn)). Using just the definition of the motion group we now illustrate
the following properties ofG: ~a! S is normal inG and satisfies the relations~3! and~b! thatF is
normal in G̃.

By definition, an element of the motion group is a homotopy equivalence class of paths in the
space of homeomorphisms with compact support. Two homeomorphismsh1 andh2 with compact
support on the regionsU1 and U2 commute ifU1ùU25f and hence so do the corresponding
motions. It is, therefore, useful to isolate the ‘‘minimal’’ neighborhoods in which homeomor-
phisms representing the generators of the motion group act so as to determine which two motions
commute.

Let Ui denote an open ball neighborhood ofCi in R3 which contains no otherCj , j Þ i , and
let Ui j denote an open ball neighborhood ofCiøCj containing no otherCk , kÞ i , j , etc. We will
refer to theUi as ‘‘exclusive’’ neighborhoods and theUi j ,Ui jk ,..., etc. as ‘‘common’’ neighbor-
hoods. The flip motionf i is then defined by a homotopy equivalence class of paths inH`(R3)
which include a ‘‘model’’ path made up of homeomorphisms with support only onUi , i.e., a path
in H`(R3) along whichCi is flipped without disturbing any of the other rings. Next, the exchange
motionei is defined by a homotopy equivalence class of paths including a model path made up of
homeomorphisms with support only onUi ( i 11) , i.e., thei th and the (i 11)th ring are exchanged
without disturbing the other rings. Finally, the slidessi j are defined by a homotopy equivalence
class of paths including a model path with support only onUi j , i.e., a path in which the other rings
are not disturbed.
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Now, the set of exclusive neighborhoods$Ui% remains invariant when acted upon by the
subgroup G˜ generated by the flips and by the exchanges. This is obvious forF, since each flipf i

acts within an exclusive neighborhood. ForSn , while the exchangeei has compact support on
Ui ( i 11) , its action can be considered as a pure exchange ofUi with Ui 11 . Thus, one can consider
as a model path for the exchange, a localizedp rotation in Ui ( i 11) which exchangesUi with
Ui 11 . This, however, is not the case with the slidessi j . While the set$Uk% for kÞ j remains
invariant under the slidesi j of Ci through Cj , the exclusive neighborhoodU j does not. The
nonlocal action of the slide takesU j into a setVj which ‘‘encloses’’Ci even though it does not
contain it, i.e., there exists aUi such thatUiùVj5f ~see Fig. 1!. Thus,Vj is not an exclusive
neighborhood ofCj . This feature leads to subtleties in what follows.

Since the exchanges and the flips leave the set$Ui% invariant, model paths are sufficient to see
thatF is normal in G̃, i.e., for all g̃PG̃, i<n, g̃ f i g̃

21PF. To show this, it is sufficient to takeg̃
to be an exchange. For the motionei f jei

21 with j Þ i ,i 11, the model paths forei and f j have
compact support onUi ( i 11) and U j , respectively, whereUi ( i 11)ùU j5f. Hence the motions
commute, so thatei f jei

215 f j . Now consider the motionei f iei
21 . The model paths forei

21

exchangeUi with Ui 11 . One can then use a model path for the motionf i which acts on some
Ui 118 ,Ui 11 so that the final exchangeei which exchangesUi 11 with Ui does not disturb the
action of f i on Ui 118 . Thus,ei f iei

215 f i 11 . Similarly, ei f i 11ei
215 f i .

However, model paths are insufficient when one wants to deal with the slides. Let us consider
a motion whose model path involves homeomorphisms with support only on the compact region
U. The homotopy class of paths defining this motion also includes the nonmodel, or ‘‘gregarious’’
paths, which involve homeomorphisms with nontrivial compact support onR32U. In other
words, gregarious pathscan disturb the other rings; they can contain homeomorphisms with
nontrivial support on neighborhoods of rings left undisturbed by the model path. Consider the
motion f i for simplicity. A model path forf i has support only onUi and corresponds to ap
rotation about an axis in the plane ofCi . A gregarious path on the other hand can be constructed
piecewise as follows:~a! RotateCi by p/3, about an axisx̂ in its plane;~b! flip anotherCj , j
Þ i ; ~c! rotateCi by a furtherp/3 aboutx̂ in the same sense as before;~d! flip Cj again;~e! and
complete with a furtherp/3 rotation ofCi aboutx̂ in the same sense as before. Such a path clearly
corresponds to the motionf i , but involves homeomorphisms ofR3 in H`(R3) which have non-
trivial support on the ringCj , j Þ i .

Both model and gregarious paths are necessary to demonstrate thatS is normal inG. S is a
normal subgroup ofG if ;gPG and ; i , j <n gsi j g

21PS. It is sufficient to takeg to be a
generator of Sn or F.

We begin with the exchanges. Let us examine the motioneksi j ek
21 by considering only model

paths in the appropriate homotopy class. ForkÞ i , j eksi j ek
215si j , since the homeomorphisms

that make up model paths forek and si j have compact supports onUk and Ui j with UkùUi j

5f. Model paths are, however, insufficient to show thateksi j ek
21 is also a slide fork5 i , i 21, j

or j 21. Consider the motionejsi j ej
21 with k5 j , iÞ j , j 11. ej

21 swapsU j with U j 11 by a p
rotation of a torus containing bothU j andU j 11 . Next, si j rotates by 2p a solid torus containing

FIG. 1. Under the slidesi j Ci ‘‘tunnels’’ through the neighborhoodU j of Cj and maps it onto the regionVj , shown by
dashed lines.Vj , therefore, ‘‘encloses’’Ci without containing it, i.e.,UiùVj5f.
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Ci and threadingCj 11 , thus mappingU j 11 into a nonexclusive neighborhoodVj 11 . A model
path for the final exchangeej would rotate byp a solid torus containing new exclusive neighbor-
hood U j 118 of Cj 11 and Ui . Ui ( j 11) in which the slide acts, is not left invariant by this final
exchange, making the resultant motion difficult to unravel. Instead, we use the following gregari-
ous path to perform the final exchange: consider a path inH`(R3) whereUi ( j 11) and U j are
swapped by performing an appropriatep rotation in the common neighborhoodUi j ( j 11) of Ci ,Cj

andCj 11 . The final exchange motion is then completed by merely movingCi back to its original
position.Ui ( j 11) is thus left undisturbed so that the full motion is the slidesi ( j 11) . A use of a
similar gregarious path for the final exchange shows thate( j 21)si j e( j 21)

21 5si ( j 21) , eisi j ei
21

5s( i 11) j ande( i 21)si j e( i 21)
21 5s( i 21) j .

Next, consider the flips. The motionf ksi j f k
21 can again be examined using only model paths

for kÞ j , and we can see that it issi j . This is because the model path forf k has compact support
only on Uk which is undisturbed by the slide even whenk5 i . However, the use of model paths
is insufficient to examine the motionf jsi j f j

21 : not only doesU j not remain an exclusive neigh-
borhood under the slidesi j , but thef j moves the points inU j relative to each other. Rather than
consider just a single gregarious path, following Ref. 7, we use a particular set of homotopy
equivalent paths. Letk be the generator ofp1(R32C) throughCj about which the slidesi j takes
Ci . We define the pathsga as follows:~a! perform a ‘‘part’’ inverse flip corresponding to a (p
2a) rotation ofCj aboutx̂ ~b! slideCi throughCj alongk21 ~c! finish the inverse flipf j

21 of Cj

by a rotationa aboutx̂ and~d! finally, perform the flipf j of Cj aboutx̂. g0 then corresponds to
the model path for the motionf jsi j f j

21 while the pathgp corresponds to the slidesi j
21 . Sincea is

a continuous parameteraP@0,p#, thega provide a homotopy map fromg0 to gp , which implies
that f jsi j f j

215si j
21 ~it is perhaps a useful exercise for the reader to see why a similar argument

cannot be used to find a set of homotopic paths betweensi j f jsi j
21 and an element ofF!.

Thus, the slide subgroupS is a normal subgroup ofG.
We can also demonstrate that the relations~3! are satisfied byS, using just the definition of the

motion group. The first of these relations is clearly satisfied by the generators ofS, since the model
paths corresponding to the slidessi j andskl involve homeomorphisms with compact support only
on Ui j andUkl whereUi j ùUkl5f. It takes a little more work to show that the other two relations
are also satisfied by the generators ofS.

Consider the motionsi j sk jsi j
21 . si j and sk j are slides of the two ringsCi and Ck through a

third ring Cj . These slides are obtained by 2p rotations of the solid toriVi j 'B23S1 and Vk j

'B23S1 which thread throughCj , with Vi j ùVk j5f. Define the pathsga as follows: ~a! A
rotation by2a of Vi j ; ~b! a 2p rotation ofVk j ; ~c! a 2(2p2a) rotation ofVi j and finally;~d!
a 2p rotation ofVi j . g0 then defines a model path for the motionsi j sk jsi j

21 , andg2p corresponds
to the slidesk j . Since a is a continuous parameter,g0 is homotopic tog2p and hence also
corresponds tosk j . Notice that by keepingVi j ùVk j5f we prevent a mixing of their rotations and
hence the deformations of the neighborhoodU j by si j and bysk j .

Next, consider the motionsi j siksjksi j
21 . Although this looks considerably more complicated

than the previous motion, the two elements ofS involved,siksjk andsi j , have compact supports
on nonintersecting neighborhoods. Namely, the elementsiksjk corresponds to slidingCj through a
generatorr of p1 of Ck and then slidingCi through the same generator. Under this action,U j

→U j andUi→Ui , while Uk is now mapped to a regionVk which now ‘‘encloses’’ bothCi and
Cj . Thus, there exists a path inH`(R3) corresponding to the motionsiksjk made up of homeo-
morphisms which leave the common neighborhoodUi j undisturbed. Since there is a model path
corresponding to the slidesi j which has compact support only onUi j , this means that the two
motionssiksjk andsi j indeed commute. Thus, the generators ofS satisfy all the relations~3!.

Remark:In Ref. 10 a set of relations for the generators in then52 case was given:f i
25E 2

5( f iE)45( f iEsjE)25e wherei 51,2 and the slidessi generateS, the flips f i generateF and the
exchangeE generatesS2 . These follow in a straightforward manner from the relations presented
above.
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III. CYCLIC STATISTICS

The inequivalent quantum sectors for our system ofn identical rings are labeled by the unitary
irreducible representations ofp1(Qn)'G. The groupG represents a ‘‘gauge’’ symmetry and the
action of the individual motionsgPG on R32C can be used to interpret the associated quantum
phases.

Let us begin by considering the simplest case, namely a single ring for which the motion
groupp1(Q) is simplyF5Z2 . Let c1 be a wave function onQ̃ with localized support along the
fibre $q̃1 ,q̃2% at qPQ, generated by the action of the flipf , i.e., q̃1→q̃25 f +q̃1 . Under the action
of f , c1→c2 , which is also localized on the fibre atq. Since wave functions take values in the
carrier spaces of the irreducible representations ofp1(Q), c25D( f )+c1 , whereD is a unitary
irreducible representation ofF5Z2 . D can be either the trivial representationD( f )51 or the
nontrivial one withD( f )521, the associated quantum sectors corresponding to either an ‘‘unori-
ented’’ quantum ring in whichc25c1 or an ‘‘oriented’’ quantum ring in whichc2

52c1 . ~Recall that classically, the rings are unoriented, since flips are a symmetry of the clas-
sical configuration space.! When there are two rings, i.e.,n52, the motion group includes the
permutation groupS25Z2 which gives rise to nontrivial quantum statistics. Consider a wave
function c which is localized along the fibre of a configuration where the two rings are well-
separated and identical: Under an exchange operationc, therefore, picks up a phase of61
corresponding to bosonic/fermionic quantum statistics~see Refs. 2, 4, and 7 for a more detailed
discussion of quantum phases and statistics for extended objects!. As we will presently demon-
strate, forn.2 the existence of the slide subgroup inp1(Qn) gives rise to an unexpected com-
plexity in the structure of the phases acquired by the wave function under the action of the
permutation group.

As mentioned in the introduction, the quantum statistics of a system is not solely determined
by Sn , but rather by the unitary irreducible representations of its stability subgroupR#SN asso-
ciated with its action on the unitary irreducible representations of the normal subgroupS›F of G.
This follows from Mackey’s theory of induced representations for semidirect product groups
P›K.8 In this construction, one begins with the space of unitary irreducible representationsP̂ of
the normal subgroupP. The subgroupK has the~not necessarily free! action onP̂

D~p!→D̃~p!5D~kpk21!, ~8!

where DP P̂, pPP and kPK. Starting with a particularD1P P̂ one obtains an orbitO
5$D1 ,D2 ,...,D r% of theK action onP̂, and the little groupR associated withO. The full unitary
irreducible representation ofP›K is then built up by taking the direct product of~a! @D1% D2

% ••• % D r # with ~b! a unitary irreducible representation ofR. For example, if one starts with the
trivial representation ofP, then the orbit consists of a single point andR5K. The unitary
irreducible representations ofP›K that can be constructed from this orbit are just the unitary
irreducible representations ofK. On the other hand, one may find an orbit ofK in P̂ with R
5e. The full unitary irreducible representation is then simply the sum of the unitary irreducible
representations in the orbit,% iD i . The action of the subgroupK is then reduced to a canonical
map which permutes the carrier spacesHi of D i

7 ~as discussed in Ref. 7 forn>4 the possibility
of projective statistics exists whenp1(Q) has a semidirect product structure!.

We now illustrate the importance of the little group in determining quantum statistics with a
simple example. Because of the nested semidirect product structure of the motion group, we may
begin by first representing the slides trivially. We thus need to find only the unitary irreducible
representations of the subgroup G˜ 5F›Sn . SinceF'Z23Z23 •••3Z2 with n Z2 factors, it is
trivial to list its unitary irreducible representations, i.e.,D[(k1 ,k2 ,...,kn), with ki561. For
example, forn53, let us start with the unitary irreducible representationD15(2,2,1) of the
normal subgroupF of G̃. This choice corresponds to two of the rings being identical and oriented,
while the third is unoriented and hence distinguishable from the others. The action ofS3 on D1
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generates the orbit$D1 ,D2 ,D3%[$(2,2,1),(1,2,2),(2,1,2)% in F̂ whose associated little

group is S2 . The resulting unitary irreducible representation of G˜ is then $D1% D2% D3% ^ G,
whereG is a unitary irreducible representation ofS2 . Under a two particle exchangeG provides
either a bosonic~11! or a fermionic~21! phase. Since one of the three rings has been rendered
quantum mechanically distinguishable from the other two, one obtains an appropriate two ring
statistics. The action of the remaining elements ofS3 , namely the cyclic elements, is canonical:
They merely permute the carrier spacesHi of theD i . This general structure continues to hold for
all n, and is illustrative for the case of primary interest here when the slides are nontrivially
represented.

Before proceeding to construct a quantum sector exhibiting cyclic statistics forn>3, let us
consider the simplest case with the slides nontrivially represented, namely whenn52. For n
52, the slide subgroup is generated by the two slidess1 ,s2 , the flip subgroupF by the two flips
f 1 , f 2 and the permutation groupS2 by the exchangeE. The following example demonstrates a
peculiar feature which will reappear forn.2, whereby slides render a pair of ‘‘locally identical’’
rings distinguishable. Let us start with the abelian unitary irreducible representation ofS,
V1(s1)51,V1(s2)521. The action off j on V1 is V1(si)→Ṽ1(si)5V1( f jsi f j

21)5V1(si) and
is hence contained in the little groupR of G̃. Under the action ofE, V1(si)→Ṽ1(si)
5V1(EsiE 21)5V1(sj )ÞV1(si) where j Þ i , so thatS2#R. Thus, the two rings are quantum
mechanically distinguishable even ifF is trivially represented. This is very unusual, since indis-
tinguishability of a collection of objects is often thought of as a local, intrinsic property of each
object. However, in this representation, it is the nonlocal action of slides which renders the two
rings distinguishable: The rings slide through each other differently. Thus, there exists a wave
function c localized along the fibre of a configuration of two well-separated identical rings such
that under the action ofs1 , c→c and under that ofs2 , c→2c. This quantum lifting of
indistinguishability by slides is key to the existence of nonpermutation group statistics forn.2.

We are now ready to demonstrate cyclic statistics for the case ofn53 rings. The slide
subgroupS is generated by the six generatorssi j , i , j 51,2,3, iÞ j , the flip subgroupF is gener-
ated by the 3 elementsf 1 , f 2 , f 3 , and the permutations form the nonabelian subgroupS3 . We start
with the following abelian unitary irreducible representationV1 of S:

V1~s12!5V1~s23!5V1~s31!521, V1~s21!5V1~s32!5V1~s13!51. ~9!

Consider the action of G˜ on V1 . The action of a flip f k on V1 for k5 i or j is: V1(si j )
→V1( f ksi j f k

21)5V1
21(si j )5V1(si j ), while the action off k , kÞ i , j is trivial. Thus,F lies in the

stability subgroup of G˜ . Single exchangesei however, do not leaveV1 invariant: For example,
V1(si ( i 11))→V1(eisi ( i 11)ei

21)5V1(s( i 11)i)52V1(si ( i 11)) ~where (i 11) is defined mod 3!.
However, a pair of exchanges does leaveV1 invariant! A pair of exchanges, sayz5e2e3 , gener-
ates the cyclic subgroupZ3 of S3 . Under the action ofe2e3 the slides $s12,s23,s31%
→$s23,s31,s12%, and$s21,s32,s13%→$s32,s13,s21%, thus leavingV1 invariant. Therefore, the sta-
bility subgroup associated toV1 is F›Z3 . The remaining elements ofF›S3 , namelye1 ,e2 , and
e3 generate the two element orbitO[$V1 ,V2% in Ŝ the space of unitary irreducible representa-
tions of S, where

V2~s12!5V2~s23!5V2~s31!51, V2~s21!5V2~s32!5V2~s13!521. ~10!

The associated unitary irreducible representation ofG is therefore nonabelian, and can be sym-
bolically expressed as

~V1% V2! ^ T, ~11!

whereT is a unitary irreducible representation of the stability subgroupF›Z3 .
Let us for simplicity consider the case whenF is trivially represented inT, so thatT is a

unitary irreducible representation ofZ3 . Z3 has two nontrivial inequivalent unitary irreducible
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representations~a! z→e2p i /3 and~b! z→e4p i /3. Thus, wave functionsca , cb on Q̃3 take values in
the ~two-dimensional! carrier spacesHa andHb of the corresponding quantum sectors. Ifca,b are
localized along the fibre of a configuration of well separated identical rings, under the action of the
cyclic permutations they pick up the respective phasesca→e2p i /3ca and cb→e4p i /3cb . Thus,
these sectors exhibit a cyclic, nonpermutation group, statistics: the rings are identicalonly when
permuted by a cyclic combination, andnot under pair-wise exchange! This is indeed a very
curious behavior and is again linked to the nonlocality of slide motions: even though the flips are
all trivially represented the slides render the rings pair-wise distinguishable but cyclically indis-
tinguishable. We say that the rings obeyZ3 cyclic statistics.

The case for arbitraryn.2 follows in a straightforward manner. Namely, we can always
isolate a pair of nontrivial subsets from the set of slide generators$sA% and $sB% which are
invariant underZn . There is a small difference in the construction in the evenn52m and odd
n52m11 cases. Forn52m, Z2m contains the subgroupZ2 ; if z is the generator ofZ2m with
z2m5e, thenzm generates aZ2 subgroup corresponding tom commuting exchanges. One can then
see that the two sets of generators$sA% and $sB% which are invariant underZ2m have cardinality
2m(m21) and 2m2, respectively. Forn52m11, Z2 is not a subgroup ofZ2m11 . Hence the two
sets of generators$sA% and$sB% each have cardinalitym(2m11). One can thus obtainZn cyclic
statistics for arbitraryn.2.

We end this section by commenting on the possibility that sectors with more complicated
nonpermutation group statistics may exist. To construct the above cyclic statistics sectors we
started with very simple abelian unitary irreducible representations of the slide subgroup. It is
conceivable that if one instead started with a nonabelian unitary irreducible representation ofS
~with certain symmetries! that the stability subgroupF›K associated with it is such thatK is
nonabelian and a nonpermutation subgroup ofSn . Such a sector would then exhibit anonabelian,
nonpermutationgroup statistics. Our current work provides a framework in which to probe such
questions.

IV. REMARKS

Anyonic statistics in 211 dimensions can be modeled by adding a Chern Simon’s term to the
n particle Lagrangian.17 In Ref. 10 a stringy generalization of this was developed to obtain
nontrivial phases from the action of the motion group, namely aB`F topological term made up
of an abelian gauge field and an axion field was added to then string Lagrangian along with an
interaction term. Similar systems have subsequently been studied in Ref. 18. In Ref. 10 it was
shown that even though the statistical phases are trivial~i.e., bosonic! the action of the slide
subgroup is nontrivial, giving rise to fractional quantum phases. Since slides involve the motion of
one ring through a nontrivial generator of the fundamental group of another ring, these fractional
phases correspond to Aharnov–Bohm phases rather than to fractional quantum statistics. Indeed,
slides can occur between nonidentical particles as well and hence the interpretation of such phases
as statistics in Ref. 18 seems questionable. Since cyclic statistics occur in nonabelian sectors of the
system, it would be interesting to construct appropriate nonabelian generalizations of Ref. 10
which exhibit this behavior. We leave this problem to future investigations.
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