Exact solutions for space-times with local rotational symmetry

in which the Dirac equation separates

B.R. lyel and C. V. Vishveshwara
Raman Research Institute, Bangalore 560080, India

(Received 5 February 1986; accepted for publication 18 February 1987)

The field equations for the class of perfect fluid space-times with local rotational symmetry in
which the authors had earlier shown the Dirac equation separates are studied. For the vacuum
and dust cases all possible solutions are exhibited. Other solutions correspond to radiation, a

stiff fluid, and a fluid with negative pressure.

I. INTRODUCTION

In an earlier paper' (hereafter referred toasI) we inves-
tigated the problem of separability of the Dirac equation in
perfect fluid space-times with local rotational symmetry and
showed that separation was possible only in a certain sub-
class of the whole family. The geometrical properties of these
space-times were also obtained but the question of the specif-
ic space-times in this subclass was left unanswered. In this
paper we study the field equations for these particular space-
times and attempt to isolate those exact solutions which fall
in this category. For the vacuum (p =p =0) and dust
(p = 0) cases all the possible solutions are exhibited. Some
exact solutions for other interesting sources like radiation
(p=1p), astiff fluid (p = p), and fluid with negative pres-
sure (p + p = 0) are also obtained. Though most of these
solutions were known earlier we present a unified and sys-
tematic treatment of the different cases of particular interest
as background metrics wherein our earlier separation of
variables for the Dirac equation is applicable.

In the next section we set up the field equations for the
relevant solutions. In Secs. III and IV we obtain all the vacu-
um and dust solutions, respectively. Section V contains some
solutions corresponding to radiation, a stiff fluid, and a fluid
with negative pressure.

Ii. SPACE-TIMES WITH LOCAL ROTATIONAL
SYMMETRY WHEREIN THE DIRAC EQUATION
SEPARATES

As demonstrated in I the space-times with local rota-
tional symmetry in which the Dirac equation separates are of

the following four types.
Case I:

ds® = (1/F)dx"—dx" — Y2(dx¥ + t2dx*),  (la)
where

F=F(x"), Y=Y(x"). (1b)

Case III:

ds? = dx® — X2dx" — Y2(dx¥ + 1% dx¥), (2a)
with

X=X(x%, Y=7Y(x°. (2b)

Case II a:

ds® = (1/F)dx® — X2dz" — Y?(dx? + 2 dx"),

(3a)
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where
F=F(%, X=X, Y=/Y(&Y. (3b)
Case II b:
ds? = (1/F)dx® — X?dx" — Y*(d7* + 1% dx>),
(4a)
where
F=F(x%, X=X("), Y=Y(x%. (4b)

In the above equations ¢ is one of the four functions

(i) t=const, (i) t=x%

(iii) ¢ =sin(x?), (iv) ¢ =sinh(x?).

It is clear that the solutions corresponding to ¢ = const
and ¢ = x? are related trivially by transformations from Car-
tesian to cylindrical coordinates in the x*-x* plane, i.e.,

x¥ = x¥cos(x?), x¥ =x2sin(x?). (6)
Consequently, these two cases can be treated together.
Further, in Cases II a and II b, by the following transforma-
tion of coordinates

(5)

x° =f1%:), x! =fX(E‘)d)‘c', N
the line elements become the following.

Case IT a:

ds? = dx” — dx" — Y(dx* + t2dx>), (8a)
where

Y=Y(x"). (8b)

Case I b:

ds® = dx® — dx" — Y2(dx¥ +12dx"), (9a)
with

Y= Y(x°). (9b)

In this form Eq. (8) is a special case of (1) with
F = const while Eq. (9) is a special case of Eq. (2) with
X = const.

Choosing units c¢=87rG=1 and signature
(+,—,—,—) the field equations are

Gap = Ta; (10a)
where for a perfect fluid

T =(p+P)U.Up — P8as- (10b)

Introducing € such that
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0, for # = const,

e=14+1, fort=sin(x?), (11)
—1, fort=sinh(x?).

Equation (10) for Case I becomes

Y.n Y,Zl €

2 = —p, 12
y Ty v’ (122)
YlFl Yzl €

22—t —= A 12b
yF_y: yr F (12)

B Yo E(GE_L)_

F Y F F Y

For Case III one obtains

, Xo¥o Y5 £, (13a)
Xy 2)’1 y2 7
Yoo Yo | €

2 — 4 — = —p, 13b
Yy vy T F (136)

Y X, Y X
00 070 +——-——-‘°° = —p. (13¢)

Y + XY X
As mentioned earlier, Case Il a corresponds to
F=const in Egs. (12) while Case II b corresponds to
X = const in Egs. (13).
The field equations should be supplemented by the
equation of state for the perfect fluid which we prescribe to
be of the form

p=(r—Dp. (14)
The conservation equation for 7 gives

T, =0. (15)
For Case I Eq. (15) gives

Po=pP,=r;=0 (16a)
and

pY*F7 "=V = const, (16b)
while for Case III we have

P(XY?)" = const = p,, (17a)

Pr=p,=p;=0 . (17b)

Though not useful for the vacuum and dust cases the
above “first integrals” are useful in the other cases.

IIl. VACUUM SPACE-TIMES (y=1; p=p=0)

Case I: If F = const, Egs. (12) become

Yl =¢ Y, =0 (18)

Thus for € = 0, one obtains a flat space-time in Carte-
sian coordinates while for € = + 1 one finds Y2 = (x!)?,
which is a flat space-time in spherical polar coordinates.
There is no solution for e = — 1.

From Egs. (12a) and (12b) Y = const is possible only if
€ = 0. In this case Eq. (12c) gives

F, /F—2F%/F*=0, (19)
which on integration yields
I/F? = (x')? (20)

(here and in later parts all trivial integration constants are
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transformed away by a suitable translation or scaling). This
is just a Minkowski space-time in Rindler coordinates

x° = x'sinh(x°), X' =x'cosh(x?). 21y

In general (i.e., if F, #0, Y, #0) by adding Egs. (12a)
and (12b) and integrating we obtain

FY, =C,. (22)
Equation (12a) can be rewritten as

2Y, /(Y3 —€) + /Y =0, (23)
which on integration gives )

Y(Yi —€)=0C, (24)

Solutions of (22) and (24) satisfy (12c) identically,
Hence a solution of Eq. (24) yields a solution of the field
equation. From Eq. (24) for € = 0, we obtain

Y2= (xl)4/3’ F2= (xl)Z/B, (25)
which is the plane symmetric Taub solution?

ds* =2z""2(dT? —dz?*) — z(dx* + dy*); z>0,
(26a)

as follows by the transformations
T= (g)l/i)xo’ z=(g)"/3(x')““,

—2/3,2 —-2/3,3
x=() 7%, y=@ %

(26b)

For € = 1, the solution may be implicitly given as

Y= — (¢,/2)(1 + cosh(2p)),

F= +ccothp, 27

+ x'+¢; = — (€,/2)(sinh(2p) + 2p).
On transforming to coordinates (x°,p,x*,x"), one obtains

ds? = tanh® p dx* — 4c% cosh p dp*

— ¢ cosh® p(dx? + sin® x? dx™). (28)

This is just a Schwarzschild solution of mass ¢,/2 as can be
seen by transforming to coordinate r:

r = ¢, cosh?(p). (29)
It is also one of the Levi-Civita degenerate static vacuum
solution type AI (Ref. 3).

For ¢ = — 1 one obtains

Y =c,sin’(p), F= +c, tan(p),

+x! ¢ = — (€,/2)(sin(2p) — 2p),
which in coordinates (x°, p, x%, x*) give

(30€)

ds? = cot? p dx® — ¢ sin® p(4 dp® + dx* + sinh? x? dx*).

(31
This is the degenerate static vacuum solution due to Ler-
Civita® which in the classification of Ehlers and Kundt® is
class AIL In terms of coordinates

z=c,sin’p, (32)
ds® = (cy/z — 1)dx™ — ((e/2) — 1)~ ' d2?
— 22(dx? + sinh® x* dx¥"). (33)

Case III: Let us now turn to Eqs. (13). If X = const they
become

Yi=—¢ Yg=0. (34)
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As for Egs. (12) for € = 0 one has a flat space-time in Carte-
sian coordinates while for € = — 1 one obtains Y2=x"
This is just a Milne universe: a flat space-time in Rindler-like
coordinates, as can be seen by the transformations
El — xl’

=0 _ O 2
X° = x" cosh x*, (35)

%2 = x%sinh x? cos x>, %*> = x°sinh x” sin x°.
From Egs. (13a) and (13b) Y = const is possible only if
¢ = 0. In this case Eq. (13c) gives

X =0, (36)

ie, X=x°
This again is a flat space-time in Rindler-like coordinates

x°=x°cosh x!, X'=x°sinhx". 37

We now consider cases when neither X nor Y'is constant. As
before, taking the difference of Eqs. (13a) and (13b) and
integrating we obtain

X=cY,. (38)
Equation (13b) on integration gives
Y(Y% +€)=c (39)

Solutions of Egs. (38) and (39) satisfy Eq. (13c) identical-
ly. For € = 0 one obtains
Y=x"", X=(x"""? (40)

which is a Kasner space-time with local rotational symme-
try. The Dirac equation in this case is treated in more detail

elsewhere.*
For € = + 1 we obtain

Y=c,sin’T, X= tc,cotT,

(41)
+ x° +¢; = (¢,/2) (2T —sin 27,
which in terms of coordinates (T, x', x%, x*) gives
ds?® = 4¢2 sin*TdT? — ¢ cot? Tdx"
— ¢ sin® T(dx* + sin® x2 dx*). (42)
Transforming to
T=c,sin®T,r=cx' (43)

yields the “inner” sector of the Schwarzschild solution, i.e.
(r<ey)
ds? = (¢,/T—1)"'dT? — (¢,/T — )dr*
—T2(dx? +sin? x2dx>). (44)
For e = — 1, on the other hand,
Y= —c,cosh®’T, X= Fc,tanh T,
+ x° 4+ ¢; = (¢,/2)(sinh 2T + 27,
which in terms of (T,x',x%,x*) yields
ds? = 4c2 cosh® TdT? — ¢ tanh® Tdx"
— ¢ cosh® T(dx?' + sinh? x? dx*).
Once again going over to
T=c,cosh? T, r=cx,

(45)

(46)

(47)

we obtain
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dst = (1 —c,/T) " dT? — (1 — ¢/ TdPP
—T%(dx? + sinh? x* dx*). (48)
This solution is to the Levi-Civita static solution AIT (Ref.

3), the analog of the R <2M region of the Schwarzschild
solution.

IV. THE DUST SOLUTIONS (y=1,p=0)

In Eq. (12) corresponding to Case I for dust, ifF, =0,
then Eqs. (12b) and (12¢) become

Y} —€=0, Y, =0, (49)
which when compared with Eq. (12a), gives p = 0. Thus no
dust solutions are possible in this case. Similarly, for Y3 =¢
no dust solutions exist.

In general, however, Eq. (12b) gives

F,/F= (Y} —¢€)/2YY,. (50)
Differentiating (50) and substituting in Eq. (12c) one ob-
tains

2, /Y + (Y3 —€)/Y?=0, (51)
which employing (12a) givesp = 0. Thus no dust solution is
possible for Eq. (12). They seem to be possible only in
metrics of subclass III corresponding to Eq. (13).

If X, =0, Egs. (13) yield

Yo +e=p,

Yoo/Y+ (¥Yh +€)/Y?=0,

Yo/Y=0,
which are consistent only for p = 0. Thus one does not have
dust solutions with X = const. From Eq. (13b) Y = const
solutions are only possible for € = 0, which from (13a) im-

plies p = 0. Thus one does not have such dust solutions ei-
ther. If X, #0, Y, #0, Eq. (13b) can be rewritten as

(52)

2Y Yo/ (Y% +€) + Y, /Y=0, (53)
which gives

Y (Y% + €) = const. (54)
For € = 0, Eq. (54) is solved by

Y= (c;x°+¢)¥ (55)

Replacing Y in (13c) from Eq. (55) one obtains for X, the
differential equation

X~ X7 —3X=0, (562)
where

T =log{cx° + ¢?). (56b)
Consequently, the general solutions for X is

X = [c3(ex° + ¢3) + €41/ (e x° + ¢;) '3, 57

Substituting for X and ¥ from Egs. (55) and (57) in Eq.
(13a) yields p:

p=1c:c1/(ex® + ¢3) [es(ex® +¢5) +aul . (58)
By a simple translation and scaling, the metric becomes
ds? = dx® — ((x° + a)/x""P dx"

—x"(dx® +dx"), (59a)
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where
a=cy/c; and p =4(x" +ax®) 7. (59b)
For the special choice of @ = 0, Egs. (59) yield
ds® = dx® — x°(dx" + dx¥ + dx*), (60a)
p=4/03x° ). (60b)

This is the Einstein—de Sitter solution for dust which has
homogeneous and isotropic spatial sections. However, if
a 0 we obtain a more general solution which does not seem
obviously equivalent to the a = 0 case. For € = 1, the solu-
tion may be written in the implicit form

Y=c¢,sin’ T,

(61)
+ x° 4+ ¢, = (¢,/2)[2T —sin 2T].
Substituting (61) in Eq. (13c) then gives
X 7/X —2/si°T=0. (62)

By inspection X = cot(T) is a solution to the above equa-
tion. To find the other solution let

X=Vcot(T) (63)
in Eq. (62) so that ¥ satisfies
Vir/Vy=2csc> T/cot T. (64)
The above equation is integrated and finally one has
X=c; (1 =TcotT) +cycot T. (65)
Substituting (61) and (65) in Eq. (12a) we have
p=cy/ctsin® T ey —cot T(c;T—c,)]. (66)
In terms of ( 7,x',x*x>) one has
ds? = 4sin® TdT? — [1 — cot T(T —¢)|* dx"
— sin* T(dx® + sin® x? dx™), (67a)
= 1/sin* T[1 —cot T(T—C)] . (67b)
Similarly, fore = — 1,
Y =¢,sinh’ 7,
o . (68)
+x° 4+ ¢, = (¢,/2)(sinh 2T — 2T).
Substituting into Eq. (13c) gives
X /r/X — 2/sinh> T =0. (69)

As before, since X = coth T is a solution of (69) we write

X=VcothT, (70a)
V is then a solution of

Vr/V = (2 csch’ T)/(coth T), (70b)
and consequently

X=c,(TcothT—1)+c4cothT. 71

For this case

p=cy/ctsinh* T{c,(TcothT—1) +cycoth T] .
(72)
In terms of (T,x',x*,x*) we thus have
ds* = 4 sinh* TdT? — [(T +B)coth T —1]*dx"
(73a)
(73b)

— sinh* T(dx* + sinh? x? dx*),
= 1/sinh*T[(T + B)coth T — 1].
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The dust solutions given by Egs. (67) and (73) for
€ = + 1 are those obtained by Kantowski and Sachs.’

V. OTHER SOLUTIONS

If F = const, adding twice Eq. (12c) to (12b) one finds
that the equations are consistent with (12a) only if
p + 3p =0. This case is not of physical interest. Similarly if
X = const adding two times (13c) to (13a) one finds that
there is consistency with (13b) only forp =p,ie, ¥ =2.1n
this case, choosing X = 1 we obtain from Eq. (17)

p=ci/4Y" (74)
Substituting in Eq. (13a) and integrating we get
0 — J__%EL . (75)
e —4eY?

For € = 0, the solution after suitable scalings give

ds? = dx% — dx" — x°(dx? + x*" dx*¥), (76a)
p=c /4x%. (76b)
For € = 1, similarly,
ds? = dx® —dx"' — (c3/4 — x°) (dx? + sin® x2 dx*),
(77a)
= (/0 (/4 —x) 7, (77)
whereas fore = — 1,
ds? = dx® — dx” — (x% — ¢2/4) (dx*
+ sinh? x? dx¥), (78a)
p=cl/4/(x" —c/4). (78b)

The solutions given by Egs. (76), (77), (78), for a y=2
fluid is to our knowledge new.

Let us consider Eq. (13) for € =0. Adding (y —1)
times Eq. (13a) to Eq. (13b) and integrating one gets

X=c,(Yi,Y7)"2‘7"’. (79)
Since
p=c(XY2)’Y, (80)

one thus gets

p=cy= (XO)V/(Y—I)YYM—SV)/Z('V—!)’ (813)
where
¢, =c/cf. (81b)
Equation (13b) thus becomes
2Y oo/ Y+ Y4/Y?
— (7/_ I)CVY:}:)/(Y—*l)Y7(4—3v)/2(r—l)' (82)

The above equation will now be solved for the following
interesting physical cases.

(a)y=2(p=p)
For this value the right-hand side of Eq. (82) is propor-

tional to Y2 /Y 2. Thus integrating (82) yields
Y= (sz +C3)V“ +a)’
where
20 =1+c/c}.

(83)
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Then Eq. (79) gives X as

X=(C,/Cz)(l+a)(£‘2XO+C3)(a‘”/(a+”- (84)
After the usual scalings one thus has
ds? = dx% — (x0)2(a-D/a+h dx?

— (VIO (dx + dxY), (85a)
p=c/(1+a)x”. (85b)

This solution is identical to one of the solutions in Vajk and
Eltgroth.®

dyy=%4 p=ip).

In this case p is proportional to Y%, and hence Eq. (82)
becomes

2Y /Y + Y2 /Y2 = —BY Y, (86a)
where
B = feci*”. (86b)

Substituting Y'Y % = u into the above equation and inte-
grating one obtains

u=YY%=(c,+BY)", (87)
whose solution may be written as

Y = (¢,/B)sinh’ T,

+x°+ ¢, = (c2/16JB7) [ sinh 4T — 4T], (88)

X =c¢,c/B (cosh® T)/(sinh T).
In terms of (T,x',x%x>) the space-time is described by

ds* = (¢t /4B *)sinh® 2T dT? — cosh* T coth® Tdx"'
— sinh* T(dx¥ + dx*), (89a)

p=1687c,/c5 sinh* 2T. (89b)
Like the earlier case, this is also a particular solution from
Vajk and Eltgroth.®

©y=0(p+p=0).

For this value of y, p = const = p,and X = ¢,Y,. Thus
Eq. (82) yields

2Y /Y + Y3/ Y2 =p, (90)
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The above equation can be integrated by letting Yo /Y = u.
We get

Y = ¢, [cosh[3pe (x° + ;0721 1%,
X = ¢,e5po/3 [cosh[3pe (x° +¢,)72]] =17
X (sinh [y3p, (x° + ¢,)/2]).
Thus the metric may be written as

ds? = dx® — (cosh(y3pex®/2))~ %2 sinh*(\3pex°/2)dx"

on

— {cosh(y3px®/2))**(dx? + dx*'). (92)

To the best of our knowledge Eq. (92) is a new solution.
For the various values of y dealt with above we have not been
able to obtain solutions of Eq. (13) for e = + 1 or of Eq.
(12) fore =0, + 1.

In the foregoing we have systematically obtained the
various exact solutions with local rotational symmetry in
which the Dirac equation is separable. As was mentioned at
the outset many of them turn out to be already known solu-
tions sometimes in terms of unconventional coordinates.
Other solutions, given by Egs. (59), (76), (77), (78), and
(92), are new as far as we know. Our results, while incorpor-
ating a regular classification of these space-times would also
facilitate the study of the Dirac equation in backgrounds
exhibiting local rotational symmetry.
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