Joint linearization instabilities in general relativity
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When Einstein’s equations are supplemented by symmetry conditions, linearization instabilities
can occur that are not present in either of the two sets of equations. The general conditions for this
joint instability are investigated. This is illustrated with an example where both the Einstein
equations and the flatness condition have more linearized solutions than exact solutions. In a
minisuperspace model the geometrical reason for these instabilities is shown.

I. INTRODUCTION

The validity of the linearized approximation to nonlin-
ear geometrical equations, such as Einstein’s equations, has
been largely clarified in the past decade.' It is appropriate to
think of solutions as points in a suitable function space; lin-
earized objects are then members of the corresponding tan-
gent space. If the tangent space defined by the linear approxi-
mation to the nonlinear equations is the same as the tangent
space to the manifold of solutions, then the equations are
called linearization stable. Thus linearization stability near a
solution means that the solution manifold is smooth near
that point—for each direction defined by a solution of the
linearized equations there is a family of exact solutions (a
curve on the solution manifold) whose tangent is that direc-
tion.

Einstein’s equations have been shown to be linearization
stable about most globally defined solutions, both for asymp-
totically flat and for spatially compact manifolds. The excep-
tions are solutions on compact manifolds with Killing vector
symmetries. Here there are quadratic conditions, in addition
to the linearized equations. These conditions must be satis-
fied to assure that there be exact solutions corresponding, in
the above sense, to solutions of the linearized equations.
These quadratic conditions are of global type, involving inte-
grals over a spacelike Cauchy surface. In any finite local
region (with boundary), Einstein’s equations are always lin-
earization stable.?

However, in a remarkable paper,® Geroch and Lind-
blom have recently shown that in the context in which exact
solutions are typically discussed the linearized approxima-
tion is not always reliable; in fact they exhibited linearization
instabilities that are characterized by local second-order
conditions (and therefore have nothing to do with the global
conditions mentioned above). The context where this occurs
involves existence of fixed Killing vectors in all the metrics
under consideration. This restriction to symmetric metrics*
is by itself linearization stable, and hence cannot be solely
responsible for the instability they find. The Geroch-Lind-
blom example exhibits another surprising feature, namely
that to linear order a!l solutions of their class are “gauge,”
ie., related by diffeomorphism to flat space-time; yet in
higher order genuinely curved, nonflat solutions are ob-
tained.
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Although Geroch and Lindblom give a satisfactory and
instructive explanation of these circumstances, they do not
interpret their results in the standard language of lineariza-
tion stability theory. It is the aim of the present paper to
show that both of the surprising features found by Geroch
and Lindblom are a result of linearization instability in the
usual sense, and to give a geometrical interpretation of this as
lack of smoothness in a function space setting. The key to our
interpretation of this instability is the observation that two
linearization stable equations may not remain stable when
imposed jointly. For functions of a finite number of variables
this is the easily visualized fact that the intersection of two
smooth surfaces is not necessarily smooth (Fig. 1). In Sec. IT
we explore this phenomenon, which for brevity we call “joint
instability,” and we discuss the second-order conditions that
follow if the joint stability criterion is violated. For simpli-
city the equations are written for the finite-dimensional case,
but they can be generalized easily to function spaces.

In Sec. III we consider the joint stability of the vacuum
Einstein equations and certain symmetry conditions, as well
as joint stability of space-time flatness and symmetry condi-
tions. We find that both systems are jointly unstable. Thus
there are more symmetric solutions of the linearized Ein-
stein equations than symmetric exact solutions, which is one
of the Geroch—Lindblom results; and there are more linearly
flat symmetric metrics than exactly flat symmetric metrics,
which is the other Geroch-Lindblom resuit.

FIG. 1. Simple example of a joint instability. The two surfaces described by
Eqs. (4a) and (4b) are everywhere smooth. However, when g = 1 their
intersection consists of the pair of lines L, and L,. This intersection is not
everywhere smooth but has a “‘conical” singularity at L,nL,.
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In Sec. IV we construct a finite-dimensional *“minisu-
perspace” of symmetric initial data in which we study the
conical structure of the subspace of Einstein solutions, and
of flat metrics, which is the geometrical feature associated
with these instabilities.

il. JOINT INSTABILITY AND SECOND-ORDER
CONDITIONS

We consider the nonlinear equations as a map ¢ from a
domain D to a range R. The space of solutions S'is the subset
of D that maps to zero, ®(S) = 0. The linearization of P is
the differential 49 that maps the tangent space at some point
of S to the tangent space of the origin of R. Let D be N
dimensional, with coordinates x°, and let .S be described by
M equations ¢‘(x°) =0 (a = 1,...,.N,i=1,....M). If dx” are
coordinates of the tangent space at a point P € S, then the
linearized equations about P are

dgi =98 gxa—o.
ax

(Here and in the following all partial derivatives are evaluat-
ed at P.) A convenient condition for linearization stability’
is that d® be a surjective map, that is, if dx? is allowed to
range over the whole tangent space of D then d¢’ will fill the
whole of TR, the tangent space of R.

Suppose ® and ¥ are equations that can be simulta-
neously imposed on D, so that they map D to two possibly
different ranges R, R,. Suppose further that they are sepa-
rately linearization stable, hence d¢ and d¥ are surjective
on TR, and TR,, respectively. Let S, and S, be the subspaces
of D corresponding to the solutions, ®(S,) = 0, ¥(S,) =0.
Imposing these equations simultaneously defines the inter-
section S;nS,. We can consider the simultaneous set as a
single map y = (®,¥) that maps D to the direct product
R, X R,. Then y is linearization stable—and hence ®, ¥ are
jointly stable—if its differential dy = (d¥,d¥) is surjective
on TR, X TR,. ’

If, on the contrary, dy is not surjective, there must be a
linear relation between d® and d¥ (since they are linear and
separately surjective). That is, there must be one or more
covectors w = (Z'g) in T*R ;X T*R, such that, for all dy*,

A
{ i
u,a—gdx"+vj£\£—dx“=0. (n
4 dx° 4 dx°
As usual in the theory of linearization stability, existence of
such w allows us to construct second-order conditions on the
A

dx®. If these conditions are nonempty, there is joint instabil-
ity. To construct these conditions we evaluate the simulta-
neousequations (P,¥) = Otosecond order (hered > denotes
the second derivative, not d Ad):

0= (d*®',d*¥))

( a Zd)i
Ix° 9x®

dx® dx® + o d*x°,
ox°

axy/ av’
___dadb+__d2xa). @)
Ix? dx® o Ix°
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Now we apply the linear relations (1) to find
(u 9% o oW/
4 Ox" x> 4 " o

)dx"dx”-}-Qab dx® dx® =0, (3)

that is, one quadratic relation for each of the covectors w.

A
[ These are nonempty, that is, independent of the linearized

equations, unless there is a matrix L; such that @,
A A

= (dy'9x*)L;(3y'/9x"). In the latter case, higher-order
4
approximations to the simultaneous equations must be con-
sidered to decide about instability. ] ‘
A simple example of joint instability'is provided by the
two surfaces in Euclidean three-space, the hyperboloid

&= (x")+ (x*)*— (x*)? - 1=0, (4a)
and the plane
V=x'—ag=0, (4b)

as shown in Fig. 1. For a generic value of @ their intersection
is smooth, a pair of hyperbolas. However, fora=1itis a
pair of intersecting, lines, x*> = 1 x>, hence the two lineari-
zation stable equations (4) must be jointly unstable for this
value of a. In fact, any point on the intersections satisfies
x!'=a, (x})? — (x°)?> = 1 — &% For such values of x?, x°,
the linearization

dx = (d®,d¥)
= (2a dx' + 2x* dx* — 2x* dx*, dx'), 5

which maps R? to R! X R, is surjective whenever x* or x°
differ from zero. However when @ = 1 and x> = 0 = x°, we
have the linear relation d® — 2d¥ = 0, which is of the form

(1) withu = 1,v = — 2. The corresponding quadratic con-
dition (3),
2(dx")? + 2(dx*)? — 2(dx*)* =0, (6)

is nonempty, hence there is a joint instability: the linearized
equations for g = 1 are satisfied by dx' =0 and dx? dx*
arbitrary; but exact simultaneous solutions of (4a) and (4b)
exist only for the directions that also satisfy (6).

IIl. EINSTEIN’S EQUATIONS AND SYMMETRY
CONDITIONS

Since it is sufficient, and more oonvenient, to discuss the
stability of the Einstein constraints, we shall assume that the
symmetries are spacelike and that the metric has nontrivial
time dependence. (This is not essentially different from the
case discussed by Geroch and Lindblom, where the metric is
independent of x, y, and ¢ but depends on z.) The space-time
is described in terms of the initial data on a Cauchy surface,’
namely the metric g; of the surface and its conjugate mo-
mentum 77 (related to the second fundamental form). The
Geroch-Lindblom symmetry condition demands that there
be three commuting Killing vectors that are passive, i.c., the
same for all metrics. Without loss of generality we can there-
fore assume that the three spacelike Killing vectors k are the
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coordinate directions @ /dx". The corresponding conditions
on the initial data are

ZL 8y (7a)

0=Y(g7m) = [-5—’:(17'.1- (Tb)
The Einstein constraints are

R(g) +7Ty77"]—£(77,'i)2’ (8a)

0=2:(gm = Lﬂ,j, (8b)

and the flatness conditions are the Gauss—Codazzi equa-
tions’

R;(8) + mym; =y mym, (9a)
Tox — Tacy; + 3 (8T, —8ymi).  (9b)
The linearizations about flat space-time (described by g;
= §;, m; = 0), written in the usual notation dg; = h;;, dm’
= w” take the form

0=®,(g7) = [

v = dl",';(h) = 4(hy,; + Ay — hye ), (10a)
- w‘]_k) (10b)
4P, = [dR(h) =de§,k - drtl“k.i’ (11a)
e ¥, (11b)
o — [dR,-,(h) =dr%, —dr%;, (12a)
) Wy —04;) +3 Sy ; —6ym,).  (12b)

Note that the equations for 4 and for @ decouple. Since the
exact equations (7b), (8b), (9b) are linear in 7, we do not
get an instability from the linear relations between (10b),
(11b), and (12b). However, the corresponding linear rela-
tions between (10a) and (1la) and between (10a) and
(12a) do result in second-order equations of the type (3).
For example, (11a) is a kind of divergence of (10a) and we
have

u==08(x—x'),

W= -85, (x—x')+876,(x—x")

[where the index 4 of Eq. (1) corresponds to the continuous
index x, the index i to the continuous index x’, and the index j
to i, j, k, and x'], so that the equation corresponding to (3)
obtained from Egs. (7a) and (8a) becomes

d*R(hh) + wy0" — (0,)2 — d T (hh)
+dTh (hh) ;=0

= w0 - (0,)% (13)
Similarly from Eqs. (10a) and (12a) we get
o*w) — 0w, * = 0. (14)

Since the exact equation ¥ = 0 actually implies R, = 0 (flat
three-space), the exact ¢, = 0 and ¥, = 0 equations reduce
to Egs. (13) and, (14), with o' replaced by #¥. It is then
casily seen that there are no further conditions on the linear-
ized solutions beyond (13) and (14).

What are the consequences of this joint instability? For
¥ and @, it means that there are too many linearized sym-
metric and flat space-time metrics. In fact, once DV =0 is
imposed, d®, always vanishes; that is, any constant k0"
satisfy the first-order space-time flatness condition. All the
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corresponding space-time metrics are therefore “gauge,”
i.e., diffeomorphic (to linear order) to Minkowski space.
This is the first surprising feature noted by Geroch and
Lindblom.

Similarly, the joint instability of ¥ and ¢, means that
there are too many linearized symmetric vacuum Einstein
metrics; again, all solutions of d¥ = 0 also solve Einstein’s
equations to linear order. Those corresponding to actual so-
lutions have to satisfy the local second-order condition, Eq.
(13). This is the second surprising feature noted by Geroch
and Lindblom. [However, their distinction between true
and apparent gauge is not represented precisely by our flat-
ness condition (9). For example, all ngnvanishing solutions
of Eq. (13) would be apparent gauge, but these still include
some flat space-times, namely those of Eq. (17) below.]

IV. A MINISUPERSPACE MODEL

The Geroch and Lindblom example that we discussed in
Sec. I1I can be used to construct a minisuperspace® that illus-
trates the conical nature of the solution manifold at points of
instability. As initial data we consider only the Euclidean
spatial metric §; and spatially constant momenta 7¥. (Wedo
not consider the corresponding mini-phase space of all spa-
tially constant g, and 7%, with positive definite g;;, because it
has a conical singularity itself at g;—0.) These form a six-
dimensional space on which the six independent compo-
nents of 7, are smooth coordinates. We investigate the sub-
spaces ¥, =0 and ®,=0. Since the symmetry is
presupposed, the instability will be exhibited by singularities
of these subspaces.

The subspace X, of solutions of Einstein’s equations is
described by

0=, =myr! — (7,/)? = Gy 7", (15)
where the DeWitt metric
Gy =6 by — 8y6u (16)

has signature + + + + + —. Therefore X, is a five-di-
mensional “light” cone over a four-sphere S*. [The four-
sphere can be obtained by intersecting (15) with the five-
plane 7, = 1.] The singular point of this cone occurs at 7;
= 0, i.e., at the Minkowski metric for the space-lime gener-
ated by these initial data. Tangents at that point satisfy the
second-order condition (13), but they span the entire six-
dimensional space. All directions at the origin that are not on
the cone X, represent unstable solutions of the linearized
Einstein constraints.

The subspace X, representing flat space-time metrics is
described by

0=®, =71/ — 7. n" 17
The general solution of (17) is
¥ = vy, (18)

where v' are the components of an arbitrary spatially con-
stant vector on the initial surface. Therefore X, is a three-
dimensional cone over the two-dimensional surface P de-
scribed by points 7Y of type (18) with v’ a unit vector. Since
any such v corresponds to a point on the two-sphere S 2, and
since v’ and — v map via (18) to the same point on P, P is
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FIG. 2. Minisuperspace of Kasner space-times. The three axes (labeled 7',
7%, 7, respectively) represent flat space-times. All other points on the
cone represent nonflat Kasner space-times. The plane represents the time
coordinate condition 7, = const. All Kasner solutions satisfying this coor-

dinate condition lie on the circle C.

topologically the projective plane. Since (17) implies (15),
3,iscontainedin £, (and PCS*). Thesingular point of 2, is
again 79 = 0, and its tangents again span the entire six-di-
mensional space. All directions at the origin that are not on
3, represent unstable (“apparently flat”) solutions of the
linearized flatness conditions.

To recover the Kasner solutions in their usual, diagonal
form we reduce the number of minisuperspace dimensions to
three by setting

=P =7"=0.

The intersection with =, is a two-dimensional cone; that
with 2, consists of three lines (see Fig. 2). Both of these
surfaces have a singularity at the origin, illustrating the geo-
metrical reason for the instability in this restricted case. To
regain the usual description of the Kasner solutions, we im-
pose the time coordinates condition, ;' = const (see Ref.
9). The resulting family of solutions form a circle, as shown
in the figure. Since these metrics cannot be continuously
connected to the Minkowski metric, the geometrical reason
for the instability is not apparent with this coordinate condi-
tion.

V. CONCLUSIONS

We have seen that two individually linearization stable
equations can be jointly unstable when imposed simulta-
neously. This situation may of course arise in cases other
than the example we discussed above. Thus, joint instability
may become important in Kaluza—Klein-type theories,
where Einstein’s equations are supplemented by further con-
ditions.

Our results also have implications for the perturbative
approach to quantum gravity. For example, since the
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Kasner-type perturbation we discussed in first order corre-
spond to gauge transformations, only the phase of the quan-
tum wave functional will vary in first order. Another quan-
tum implication of linearization instability has been pointed
out by Moncrief'®: the operator form of the second-order
conditions should be imposed on the wave function of linear-
ized quantum gravity. An analogous procedure has to be
followed where there is a joint instability, provided of course
that a consistent quantum analog exists of the jointly unsta-
ble equations. Similarly, Moncrief conditions arise if there is
a classical joint instability, and if the supplementary condi-
tions are solved before quantizing (as in the minisuperspace
approach).

*
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