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Evidence of a first-order smectic-4-smectic-C* (SmA-SmC?*) transition is presented. De-
tailed x-ray studies on 4-(3-methyl-2-chloropentanoyloxy)4 '-heptyloxybiphenyl show that the
SmA-SmC™* transition in this material is characterized by a discontinuous jump in the layer spac-
ing (and hence in the tilt angle) and by a narrow two-phase region in which the density modula-
tions due to the smectic-4 and the smectic-C* phases coexist. Addition of a second compound
drives the SmA4-SmC®* transition towards second order.

Smectic-4 (SmA) and smectic-C (SmC) liquid crystals
can be characterized as orientationally ordered fluids with
a one-dimensional mass density wave: in the 4 phase the
wave vector of this density wave is along the director and
in C it is at an angle. When the molecules are optically
active, a chiral smectic-C (or -C*) phase! is observed
which exhibits ferroelectric properties.? Experimental
evidence indicates that the SmA-SmC* transition is
mainly driven by intermolecular forces producing the C
phase and not by a ferroelectric coupling between per-
manent dipoles.> The spontaneous polarization of the C*
phase is thus a secondary order parameter while the tilt
angle is (as in the case of the nonchiral C phase) the pri-
mary order parameter. Thus, the basic physics of the
SmC™*-SmA transition may be expected to be the same as
that of the SmC-SmA transition.

Experimentally, the SmA4 -SmC (or SmA4-SmC*) tran-
sition is generally found to be second order. Although it
was initially proposed that this transition might exhibit
heliumlike critical behavior* subsequent studies have
clearly shown that the SmA4-SmC as well as the SmA-
SmC?* transition is mean-field-like with a sixth-order
term in the Landau free-energy expansion.>~® Recently,
Lien and Huang® predicted that the SmC-SmA transition
can be driven to become first-order by large fluctuations of
a nearby SmdA-isotropic transition. However, the ex-
istence of a first-order SmA4-SmC (or SmA4-SmC*) tran-
sition does not appear to have been established experimen-
tally so far.

Recently, several new ferroelectric liquid crystals exhib-
iting SmA and SmC®* phases were found'®'! which
showed very high values of the spontaneous polarization.
Investigation of their behavior in external electric fields as
well as preliminary x-ray and differential scanning
calorimetry (DSC) studies indicated that the SmA-
SmC* transition in some of these compounds is likely to
be first order.!? In this Communication we present the re-
sults of our high-resolution x-ray measurements on 4-(3-
methyl-2-chloropentanoyloxy)-4'-heptyloxybiphenyl  or
C7 which show that the SmA4-SmC®* transition in this
material is clearly first order and characterized by a two-
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phase region in which the density modulations of the SmA4
and the SmC* phases coexist. We also present prelimi-
nary studies on mixtures of C7 with another material, 4-
heptyloxy-4'-decyloxybenzoate (70 PDOB) which indi-
cate the existence of a tricritical point for the SmA4-
SmC* transition.

The experiments have been conducted using a
computer-controlled Guinier diffractometer (Huber 644)
described earlier.!> Copper Ka; and Ka, lines were
separated and only the former was used for the experi-
ments. An aligned SmA phase was obtained by cooling
the sample at a very slow rate (~ 300 mK/h) from the iso-
tropic to the SmA phase in the presence of a 2.4-T mag-
netic field. The aligned sample was then transferred along
with the temperature controlled oven to the goniometer
head of the diffractometer. The accuracy in the deter-
mination of the wave vector in the SmA and SmC* phases
was 2x10 ™4 A~! while the resolution in the equatorial
direction (also the scanning direction) was 3x10 ™3 A ™1,
The temperature was maintained to a constancy of 5 mK
during each measurement.

Figure 1 shows the diffractometer scans taken in the
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FIG. 1. Raw diffractometer traces taken along the equatorial
direction in the (a) SmC* (53.9°C), (b) two-phase region
(54.0°C) and (c) SmA (54.06°C) of 4-(3-methyl-2-
chloropentanoyloxy)-4'-heptyloxybiphenyl (C7). The coex-
istence of two density modulations in the two-phase region
signifies that the smectic-4—smectic-C* transition is first order.
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perature in the vicinity of the smectic-4-smectic-C* transition
in C7. The vertical dashed lines indicate the two-phase region.

neighborhood of the SmA4-SmC?* transition in C7. The
signature of the SmA4-SmC?* transition is a two-phase re-
gion whose diffraction pattern consists of the wave vectors
corresponding to both the SmA4 and SmC™* phases. This is
exactly as expected and indeed seen earlier for a first-
order transition between two smectic phases with different
layer periodicities. !4!*
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FIG. 3. Variation of the intensity of the x-ray diffraction
maxima as a function of temperature for C7. The data in the
immediate vicinity of the SmA4-SmC?* transition are shown on
an enlarged scale in the inset. Solid and open circles in the inset
correspond to the density modulations in the SmA and SmC*
phases respectively. A crossover of the intensity is seen in the
two-phase region.
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FIG. 2. Variation of the smectic layer spacing (d) with tem- (Tyc*=T) Ik

FIG. 4. Variation of the tilt angle ¢ calculated from the layer
spacing data as a function of T .+ —T for C7 and its mixtures
with 70PDOB. The concentrations (expressed in mol% of
70PDOB) are @, 0 (C7); 0, 5.15; A, 9.68;0, 15.0; and A, 19.4.

The temperature variation of the layer spacing d and
the intensity of the quasi-Bragg peaks in the neighborhood
of the SmA4-SmC™ transition are plotted in Figs. 2 and 3
respectively. Both the figures show the existence of a
two-phase region of about 50 mK. The characteristic
features of this two-phase region are the coexistence of the
layer spacing corresponding to both the SmA and the
SmC* phases and a crossover of the intensities of the x-
ray diffraction peaks, the crossover occurring roughly in
the midposition of the two-phase region. We have also
evaluated the tilt angle ¢ in the SmC®* phase by the ex-
pression ¢ =arccos(dce/d4) where d4 and d.+ are the
layer spacings in the SmA and SmC?* phases respectively,
d4 being taken as the value as measured just before the
commencement of the two-phase region. It may be point-
ed out that the tilt angle obtained directly from a “four-
spot” x-ray diffraction picture (photographic technique ')
was found to be in agreement with that evaluated from
the layer spacing data. These data which are presented in
Fig. 4 (closed circles) show that at the SmA4-SmC?* tran-
sition ¢ exhibits a discontinuous jump (~15°). Thus, we
have observed for the first time clear evidence of the ex-
istence of 4 first-order SmA-SmC* transition.

Having observed a first-order SmA-SmC?* transition, it
is relevant to ask whether the transition can be driven to
second order and hence towards a tricritical point by add-
ing a suitable second component. We have attempted to
do this by adding 70PDOB to C7. Preliminary results of
the variation of the tilt angle (determined as explained
earlier) for a series of mixtures of 70PDOB in C7 are also
given in Fig. 4. It is clear that with increasing concentra-
tion of the former the jump in ¢ at the SmA4-SmC* tran-
sition decreases until finally for mixtures with x =15
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mol%, the tilt angle continuously goes to zero indicating
thereby that the transition has become second order for
this mixture. We have therefore shown, albeit somewhat
qualitatively, that a tricritical point for the SmA4-SmC*
transition exists for mixtures of C7 with 70PDOB in the
concentration range between 10 and 15 mol%. It would
be of considerable interest to look in these mixtures for a
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mean-field-like to tricritical crossover as discussed by Lien
and Huang.® Such a study would help in a further under-
standing of the smectic-4-smectic-C* transition.

The authors wish to thank Professor S. Chandrasekhar
for many useful discussions.
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