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Gravitational waves from black hole binary inspiral and merger:
The span of third post-Newtonian effective-one-body templates
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We extend the description of gravitational waves emitted by binary black holes during the final stages of
inspiral and merger by introducing in the third post-Newtonian~3PN! effective-one-body~EOB! templates
seven new ‘‘flexibility’’ parameters that affect the two-body dynamics and gravitational radiation emission. The
plausible ranges of these flexibility parameters, notably the parameter characterizing the fourth post-Newtonian
effects in the dynamics, are estimated. Using these estimates, we show that the currently available standard
3PN bank of EOB templates does ‘‘span’’ the space of signals opened up by all the flexibility parameters, in
that their maximized mutual overlaps are larger than 96.5%. This confirms the effectualness of 3PN EOB
templates for the detection of binary black holes in gravitational-wave data from interferometric detectors. The
possibility to drastically reduce the number of EOB templates using a few ‘‘universal’’ phasing functions is
suggested.
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I. INTRODUCTION

Current theoretical understanding, stemming both fr
general relativity and astrophysics, places black hole bina
at the top of the list of candidate sources for the interfe
metric gravitational-wave detectors that are nearing
completion of their construction phase. On the one ha
black hole binaries are by far sources whose dynamics~early
inspiral and late time quasi-normal mode ringing to a la
extent, late inspiral, plunge and merger to a lesser exten! is
better understood than other sources, such as supernov
relativistic instabilities in neutron stars, so that it is possi
to construct reasonably good template waveforms to ext
signals out of noise. On the other hand, astrophysical
estimates of black hole binary coalescences, though
known accurately, have a range whose upper limit is la
enough to expect a few mergers per year within a distanc
150 Mpc @1#.

The merger phase of binaries consisting of two 15M (

black holes takes place right in the heart of the Laser In
ferometric Gravitational Wave Observatory~LIGO!-VIRGO-
GEO sensitivity band, giving us the best possible picture
this highly nonlinear evolution. Eventually, when detecto
reach good sensitivity levels, one hopes to learn experim
tally about this strong gravity regime which has been a s
ject of intense analytical and numerical studies for more t
a decade. In the meantime, what is needed is a set of m
waveforms or templates that describe the dynamics clos
the merger phase accurately enough so that only a s
fraction (,10%) of all events will go undetected.
0556-2821/2003/67~6!/064028~19!/$20.00 67 0640
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Two general viewpoints are possible to reach this goa
maximalist one or a minimalist one. Themaximalistview-
point consists in enlarging as much as is conceivable~using
in a ‘‘democratic’’ way all available methods in the literatu
for treating binary coalescence! the bank of filters, with the
hope that even the methods which appeara priori less reli-
able than others might, by accident, happen to describ
good approximation to the ‘‘real’’ signal. This is the view
point taken by Buonanno, Chen and Vallisneri in their ca
ful, and detailed analysis in Ref.@2#, on the basis of which
they advocate expanding the net by using a multiparam
template family able to approximate most of the results
the conceivable analytical methods. However, this ‘‘dem
cratic’’ attitude comes at a cost that calls for an altern
strategy that we explore here. The problem with this meth
is that it leads to a dramatic increase in the total numbe
templates from;25 templates to;104 templates, which has
the bad consequence that it leads a larger false alarm
~These estimates of the number of templates are those
tained, as in@2#, by ‘‘dividing’’ the parameter space by the
local span of the template at the minimal match. This is
underestimate because it neglects boundary effects. Fo
stance, a more realistic estimate of the number of the th
post-Newtonian effective-one-body templates would
;150 rather than 25.!

By contrast, we advocate here aminimalist viewpoint
consisting in~i! focussing exclusively on the best availab
analytical description, and~ii ! generalizing this description
by adding several parameters that describe ‘‘new directio
corresponding to physical effects not perfectly modelled
©2003 The American Physical Society28-1
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this description. The most important of these directions
the effects due to higher post-Newtonian~PN! effects, not
yet calculated, but known to exist. A thorough study of t
robustness of our preferred description against the inclu
of currently unknown effects should allow an informed a
judicious covering of the parameter space of interest with
overtly expanding the size of the total bank of templates

The best available analytical description at present is
our opinion, the ‘‘effective-one-body’’~EOB! approach pro-
posed and constructed for non-spinning bodies at sec
post-Newtonian~2PN! order by Buonanno and Damou
@3,4#, extended to third post-Newtonian~3PN! order by
Damour, Jaranowski and Scha¨fer @5# and generalized to spin
ning bodies by Damour@6#. On the one hand, the EOB map
using the Hamilton-Jacobi formalism, the real ‘‘conserv
tive’’ ~in the absence of radiation reaction! dynamics of two
bodies with massesm1 andm2 into an EOB problem of a tes
particle of mass m[Mh ~where M[m11m2 and h
[m1m2 /M2), moving ~essentially! in an effective back-
ground metricgmn

eff which is a deformation of the Schwarz
child metric with deformation parameterh. Further, by
supplementing the above dynamics by an additio
radiation-reaction force obtained from a Pade´ resummation
of the gravitational-wave flux, it allows for the first time th
possibility to go beyond the adiabatic approximation and
analytically discuss the transition from inspiral to plunge a
the subsequent match to merger and ringing. The impl
tions of the EOB templates for data analysis of binary bla
holes were explored in@7# where it was shown that th
signal-to-noise ratio~SNR! is significantly enhanced relativ
to the usual PN templates due to inclusion of the plun
signal. The EOB formalism does also provide initial dynam
cal data~position and momenta! for two black holes at the
beginning of the plunge to be used in numerical relativity
construct gravitational data like metric and its time deriv
tive and evolve Einstein’s full equations through the mer
phase.

The analytical prediction of the EOB method~including
spin! for invariant functions was compared to numerical
sults based on the helical Killing vector approach@8# for
circular orbits of corotating black holes by Damour, Gou
gouhlon and Grandcle´ment @9# and was shown to agree re
markably well. The agreement was robust against choice
resummation of the EOB potential and improved with the
order. Recently, Buonanno, Chen and Vallisneri@2# made a
detailed and exhaustive comparison of all currently availa
waveforms for non-spinning binary black holes resulti
from different approximations. This study showed~among
other results! that EOB models are more reliable and robu
than other non-adiabatic models.

Recently Blanchet@10# has made a comparison of th
straightforward PN predictions with@8# and shown that a
3PN order they are as close to the numerical results as
resummed approaches. While it is indeed interesting to n
this closeness of the results derived from one particular n
resummed 3PN function@the ‘‘energy function’’ E(v) for
circular orbits# to the numerical results~and to the EOB
ones!, we still do not see any way yet by which, as t
HamiltonianH(r ,p) does in the EOB approach, the bare P
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results for the ‘‘circular energy function’’E(v) can be used
to define templates beyond the adiabatic approximation.
Ref. @4# has shown the importance of going beyond the ad
batic approximation in describing the smooth transition b
tween the inspiral and the plunge, and as@2,7# has shown
how significant was the contribution of the plunge to t
SNR, we consider that the EOB waveforms are the b
currently available, analytical templates for binary black ho
coalescences.

In this paper we wish to strain to extremes the flexibil
of the EOB formalism by tugging it in directions where
can be theoretically pulled and by locating directions it
most likely to yield under deformations by unmodelled e
fects~including higher order PN effects!. We shall introduce
seven ‘‘flexibility’’ directions, i.e. seven new flexibility pa
rameters. Then we will investigate the ‘‘span’’ of the origin
~3PN! EOB templates in the space of waveforms opened
by our extension of the EOB waveforms into seven n
‘‘flexibility’’ directions. By span of a given bank of tem-
plates, we mean the region of signal space which is w
modelled by some template in the bank, i.e. the set of sign
Ssuch that the maximized overlap ofSwith sometemplateT
is larger than 0.965.1 Among our seven flexibility parameter
some, such asb5, represent higher order@fourth post-
Newtonian~4PN!# corrections in the dynamics, some, su
asu, the arbitrariness in the best available 3PN gravitation
wave flux calculation due to incompleteness of the Ha
amard partie finie regularization, and others, such ascP ,
denote a parameter used to factor the gravitational-wave
in @11# and accelerate the convergence of the Pade´ approxi-
mants to the numerical flux in the test-mass case. Further
current development of EOB has made, at several sta
specificchoicesof representation of various physical effec
and, as in any analytical construction, the choices were
simplestthat one could apparently make. We then explor
the effects induced by amodificationof these simple choices
i.e. the consideration of new versions of EOB, characteri
by different parameter values reflecting other allowed m
complex choices. These comprise the remaining four par
eters and includez2(z2), a parameter appearing in the effe
tive HamiltonianHeff of the EOB; f NonAdiab, a parameter to
modify the simplest treatment of non-adiabatic effects in
current version of EOB templates;f NonCirc, a parameter to
modify the simplest treatment of non-circular effects in t
current version of EOB templates; and finallyf transition to
allow the possibility that the transition between plunge a
ringing may occur at frequencies different from that assum
in the simplest EOB model. The seven paramet

1When we do not have a perfect template to capture a signal
the effective distance up to which a detector could have ideally s
goes down. Suppose, with the use of the correct templates, an
tenna could detect sources at a distanceD. If the best overlap we
can achieve with the true signal isf then that distance drops tofD
and the new rate of events would be proportional to (f D)3. In other
words, the fractional decrease in the number of events is (12 f 3).
By demanding that (12 f 3),0.1 ~i.e. a loss of no more than 10% o
all potential events! we get f .0.965.
8-2
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(b5 , u, cP , z2 , f NonAdiab, f NonCirc, f transition), are referred
to as theflexibility parameters. Varying them and testing t
change of the physical predictions under reasonable varia
of these parameters is a way of probing the overall rob
ness of the EOB framework. What we specifically inves
gate is whether a bank of standard 3PN EOB template
sufficient to represent all plausibly relevant extended fam
of waveforms generated by these new flexibility paramet

In the context of this investigation our waveforms will b
parametrized by two sets of parameters:~a! The first set con-
sists of the usual intrinsic and extrinsic parameters ente
the construction of standard waveforms, such as the ma
of the component objects and their spins, some refere
phase, etc., denoted collectively bypk , k51, . . . ,K. In this
work we shall only deal with non-spinning point particles
the restrictedPN approximation@12# which requiresK54
with p1,25m1,2 denoting the masses of the two bodies,p3
5t ref a reference time~related to the instant of coalescence!,
andp45F0 the phase of the wave at the reference time.~b!
The second set consists of theflexibility parametersintro-
duced above. We shall denote these flexibility parameter
pa , a51, . . . ,A, with (A57)

p15b5 , p25u, p35cP , p45z2~z2!,

p55 f NonAdiab, p65 f NonCirc, p75 f transition.
~1.1!

For studies of the span of a bank of templates of the k
we propose to do in this paper, it is helpful to introduce t
notions of a standard orfiducial templateand its associated
variant orflexed signalconstructed by turning on one of th
flexibility parameters. The termfiducial templateis used to
represent a waveform constructed in a certain approxima
and at a given PN order with a fixed set of values of
unknown parameters introduced above. In this paper, ou
ducial template will be the standard EOB waveform~see
Sec. III! at the 3PN order with the flexibility parameters a
set to zero:

fiducial template5h~ t;pk ,pb50,;b![T~ t;pk!. ~1.2!

In contrast, the associatedflexed signalwill again be the
EOB waveform at 3PN order withall but oneof the flexibil-
ity parameterspa set to zero:

pa2flexed signal5h~ t;pk ,paÞ0,pb50,; bÞa!

[S~ t;pk ,pa!. ~1.3!

In other words, in our test of robustness wedo not allow all
the seven parameters to vary simultaneously. Such a varia-
tion would lead to a formidably high dimensional parame
space which is computationally impossible to investigate
the moment. Rather, our aim is to study the effect of e
flexibility parameter independently and to gauge the ext
to which our standard fiducial template waveform can mim
the changes brought about by the flexibility parameterspa
by a mere variation of the intrinsic parameterspk . Such a
systematic study allows us to isolate and identify the m
important unknown physical effects, and decide if it is ne
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essary to introduce the corresponding flex parameter a
additional parameter in search templates used in the de
tion of gravitational waves from black-hole binaries.

As in earlier work, our main tool for measuring the sp
of a bank of templates is theoverlap of a standard fiducial
template with a given flexed signal.~See Sec. VI for the
definition of the overlap.! In this study, we use two measure
of ‘‘good overlaps’’: faithfulnessand effectualness@11#. A
template is said to befaithful if its overlap with aflexed
signalwaveform ofexactly the same intrinsic parameterval-
ues is larger than 0.965~after maximization over the extrin
sic parameters!. It is expected that faithful templates are al
good at estimating source parameters although this is
guaranteed to be the case. Atemplateis said to beeffectualif
its overlap with aflexed signalwaveform,maximized over
all the intrinsic and extrinsic parameters, is larger than
0.965. Obviously, every faithful template is necessarily
fectual but not all effectual templates are faithful. Note th
the notions of faithfulness and effectualness might depend
the particular flexibility direction which is explored: While
template waveform could be faithful with respect to t
p1-flexed signal, it might only be effectual with respect
the p2-flexed one and neither with respect to thep3-flexed
one.

Implementing the above analysis we conclude thatthe
standard 3PN EOB templates are effectual with respect to
flexibility parametersintroduced in this study, including the
parameterb5 characterizing the 4PN dynamical effects.
other words, thespanof the bank of 3PN EOB templates i
large enough to cover the space of signals described by
physically plausible ranges of the seven flexibility para
eters considered here. No additional extra parameters ar
quired in the detection templates to model the more comp
choices possible in the EOB approach at the 3PN level or
dominant dynamical effects at the 4PN order. In particu
there is no need to increase the total number of templ
beyond the level required for the standard 3PN EOB te
plates.

II. THIRD POST-NEWTONIAN DYNAMICS
AND ENERGY FLUX

The conservative dynamics of binary systems in the
approach has now been determined to 3PN accuracy.
independent calculations, one based on the canon
Arnowitt-Deser-Misner~ADM ! approach together with the
standard Hadamard partie finie regularization for the s
field effects@13,14# and the second, a direct 3PN iteration
the equations of motion in harmonic coordinates supp
mented by an extended Hadamard partie finie regulariza
@15–17#, agree that the 3PN dynamics and consequently c
served quantities like energy are fully determined except
one arbitrary parameter calledvs in the ADM approach and
l in the harmonic coordinates related by

l52
3

11
vs2

1987

3080
. ~2.1!

The Hadamard regularization of the self-field of point pa
ticles used in@13–18# has the serious drawback of violatin
8-3
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DAMOUR et al. PHYSICAL REVIEW D 67, 064028 ~2003!
the gauge symmetry of perturbative general relativity~dif-
feomorphism invariance!, and thereby of breaking the crucia
link between Bianchi identities and equations of motio
This explains why the Hadamard-based works@13–18# were
unable to fix the parametervs . Recently, Damour, Jara
nowski and Scha¨fer @19# have proposed to use a better reg
larization scheme, one which respects the gauge symmet
perturbative general relativity:dimensional regularization.
They have implemented this improved regularizati
scheme, which led them to a unique determination@19# of
the parametervs , namely vs50, corresponding tol5
21987/3080. Thus the conservative dynamics is comple
determined to 3PN order within the ADM approach usi
dimensional regularization. Though it will be interesting
reconfirm the value ofl by other treatments, we believe th
the result of@19# is trustable especially in view of the obten
tion there, by the same regularization method, of the uni
Poincare´-invariant momentum-dependent part of the Ham
tonian. Thus, for all applications including data analys
there is no arbitrariness in 3PN dynamics, and consis
with this, in this paper we setvs50 or equivalentlyl5
21987/3080.

On the other hand, the gravitational-wave energy fl
from binary systems has been computed using the multip
post-Minkowskian approach@20# in harmonic coordinates
and Hadamard regularization to 3.5PN accuracy. Unlike
earlier orders@21# the instantaneous and hereditary contrib
tions do not remain isolated. At 3PN order, in addition to t
instantaneous terms, the tails-of-tails and tail-squared te
also contribute. Fortunately, they have been computed
Blanchet@22# who has also computed the tail contribution
3.5PN order. The gravitational wave energy flux contains
3PN-accurate time derivative of the mass quadrupole
ment leading to a specificl dependence which, as explaine
earlier, is now known sincevs is computed. However, the
incompleteness of the Hadamard regularization introdu
additional arbitrary parameters in the mass quadrupole
ment leading to three new undetermined parameters
combined into the unique quantityu in the circular energy
flux. Unfortunately, up to now no alternate regularization
calculations without regularizations exist that provide t
value of u. Thus, one has to reckon with this arbitrary p
rameter in the templates that one constructs and the bes
can do is estimate its implications for data analysis of
spiraling compact binaries as in@2# or in the present work.
-

s
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The expression for the 3PN energy function@13–15# and
3.5PN flux function@23,24# and the resulting 3PN and 3.5P
coefficients in various phasing formulas discussed in@7# are
summarized in@25#. Though they are the basis of the prese
analysis, they are not reproduced here for reasons of bre
and we refer the reader to@25# for those expressions.

In this work we have used the 3PN-accurate flux funct
because the standard near-diagonal Pade´ of the 3.5PN flux
function involves a spurious pole in the physically releva
range of variation ofv. We leave to future work an investi
gation of alternative Pade´’s of the 3.5PN flux free of such
spurious poles. In view of the numerical smallness of
3.5PN contribution to the flux, we expect no significa
change in our physical conclusions.

III. TRANSITION FROM INSPIRAL TO MERGER—THE
3PN EFFECTIVE-ONE-BODY MODEL

The starting motivation of the EOB approach is to try
capture in a small number of numerical coefficients the
sential invariant PN contributions from among the pletho
of terms that exist in the complete PN expansion of the
nary’s equations of motion, in the belief that many of the
terms are gauge artifacts and hence irrelevant. It is a
strongly motivated by the need to look for an analytic rou
to go beyond the adiabatic approximation which brea
down before the last stable orbit. We recall that the stand
PN treatments based on invariant functions (E(v),F(v))
are limited by the adiabatic approximation~and cannot de-
scribe the transition to plunge!, while the treatments base
on the direct use of~non-resummed! PN-expanded equation
of motion are unreliable@2# because of poor convergence
the straightforward PN-expanded equations of motion.

As shown in@4#, at 2PN order the mapping to EOB i
eventually unique~when imposing some general requir
ment!. The waveform, the equations governing the evolut
of the orbital phase and the initial conditions to integra
them through the plunge are discussed in@4# and were used
in @7# to construct 2PN EOB templates and investigate th
performance. At 3PN order, on the other hand, the situa
is more involved. When requiring that the relative motion
equivalent to geodesic motion in some effective metric, th
are more constraints than free parameters in the energy
and effective metric. This led@5# to an extension of the 2PN
EOB construction~non-geodesic motion! involving a larger
variety of choices. In Ref.@5# the following generalized 3PN
EOB Hamiltonian was introduced:
Ĥeff~r ,p!5AA~r !F11p21S A~r !

D~r !
21D ~n•p!21

1

r 2
~z1~p2!21z2p2~n•p!21z3~n•p!4!G , ~3.1!
where the functionsA(r ) andD(r ) are given by the compo
nents of the effective spherically symmetric metricgmn

eff :
A(r )52g00

eff(r ) and D(r )/A(r )5grr
eff(r ) ~they also depend

on the parametersz1 andz2, see below!. Herer andp denote
the ~scaled! canonical coordinates of the effective dynamic
 ,

r[ur u, n[r /r ; r is dimensionless, being scaled byGM. The
effective position vectorr is linked @3,5# to the relative po-
sition vectorx12x2 of the two holes in ADM coordinates by
a post-Newtonian expansion which starts asr5(x1
2x2)/(GM)1O(c22).
8-4
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The parametersz1 , z2, andz3 are arbitrary, but subject to
the constraint

8z114z213z356~423h!h, ~3.2!

which forbids the geodesic choicez15z25z350 of the 2PN
EOB, but allows the minimally non-geodesic choice,z1
06402
5z250 andz352(423h)h. @See, however, below our dis
cussion of non-minimal choices as flexibility directions.#

In spherical coordinates (r ,u,f), restricting the motion to
the equatorial planeu5p/2, the Hamiltonian Eq.~3.1! can
be written as
Ĥeff~r ,pr ,pf ;z1 ,z2 ,z3!5AA~r ;z1!H 11A~r ;z1!D~r ;z1 ,z2!21 pr
21

pf
2

r 2
1Z~r ,pr ,pf ;z1 ,z2 ,z3!J , ~3.3!
ton
where

Z~r ,pr ,pf ;z1 ,z2 ,z3![
1

r 2 F z1S pr
21

pf
2

r 2 D 2

1z2S pr
21

pf
2

r 2 D pr
2

1z3 pr
4G . ~3.4!

The functionsA(r ;z1) andD(r ;z1 ,z2)21 depend onz1 and
z2:

A~r ;z1!512
2

r
1

2h

r 3
1

a4~z1!

r 4
, ~3.5a!

D~r ;z1 ,z2!21511
6h

r 2
1

2~2623h!h27z12z2

r 3
,

~3.5b!

where

a4~z1!5S 94

3
2

41

32
p2Dh2z1 . ~3.6!

The ~scaled! 3PN EOB-improved realHamiltonian is the
following function of the EOB Hamiltonian Eq.~3.3!:

Ĥ real5
1

h
A112h~Ĥeff21!. ~3.7!
The equations of motion have the form of the usual Hamil
equations:

dr

dt
5

]Ĥ real

]pr
, ~3.8a!

df

dt
5

]Ĥ real

]pf
, ~3.8b!

dpr

dt
52

]Ĥ real

]r
, ~3.8c!

dpf

dt
5F̂f , ~3.8d!

whereF̂f is thef component of the damping force.

A. Padéapproximants of A

The straightforward PN expansion of the functionA, in
terms of the variableu[1/r , reads

A~u!5122u12hu31a4~h!u41a5~h!u51O~u6!.
~3.9!

To improve the convergence of the PN expansion~3.9! we
introduce the following sequence of Pade´ approximants ofA
@5#:
A1PN~u![122u, ~3.10a!

A2PN~u![

12S 22
1

2
h Du

11
1

2
hu1hu2

, ~3.10b!

A3PN~u![
2~42h!1~a4~h!21618h!u

2~42h!1~a4~h!14h!u12~a4~h!14h!u214~a4~h!1h2!u3
, ~3.10c!
8-5
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A4PN~u;a5![
~1628h2a4~h!!2~32224h24a4~h!2a5~h!!u

d4PN~u;a5!
, ~3.10d!

where

d4PN~u;a5![~1628h2a4~h!!1~8h12a4~h!1a5~h!!~u12u2!12~8h21~41h!a4~h!12a5~h!!u31~16h21a4~h!2

18ha4~h!1~822h!a5~h!!u4. ~3.11!
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Reference@9# has studied some variants of the specific Pa´
choices made in Eqs.~3.10! and found that they had ver
little effect on physical quantities down to the last stab
orbit. Therefore, we shall not include below, among our fle
ibility directions, the ones corresponding to different choic
of definition of A function. We shall always define it usin
the Pn

1-type Pade´ used above. While the 3PN-level coeffi
cienta4(h)5b4h is known when usingvs50 @19# @see Eq.
~4.2b! below#, the 4PN-level coefficienta5(h) introduced
here is unknown. Its possible values will be discussed be

B. 3PN EOB adiabatic initial data

The initial dimensionless frequencyv̂0 depends on the
initial frequencyf GW

0 of the gravitational wave and the tota
massM of the binary system:

v̂05
GMp f GW

0

c3
. ~3.12!

In the following equationsA andD are treated as function
of u, A8[dA/du. The initial value ofr 0[1/u0 one obtains
solving numerically equation:

v̂05u3/2!
2

1

2
A8

112hS A

AA1
1

2
uA8

21D .

~3.13!

The initial momenta are then obtained from equations:

pf
0 5A2

A8

u~2A1uA8!
U

u5u0

, ~3.14a!

pr
05

u~2A1uA8!A8D

A@2u~A8!21AA82uAA9#
U

u5u0

F̂f~v̂0!

v̂0

. ~3.14b!

C. 3PN EOB light ring

The light ring coordinateulight ring51/r light ring is the solu-
tion of equation
06402
e

-
s

w.

A~u!1
1

2
uA8~u!50. ~3.15!

See Ref.@4# for a discussion of the physics associated w
the light ring within the EOB framework.@See also@26# for
alternative views based on the non-resummed 3PN en
function E(v).#

IV. ESTIMATING THE EFFECT OF UNKNOWN PHYSICS

Our main goal is to vary the flexibility parameters with
a certain range motivated by physical arguments to be
cussed in Secs. IV A–IV G and to determine the degrada
caused by such a variation on theoverlap of flexed wave-
forms with fiducial waveforms. If the degradation is sma
then we further explore the maximum extent to which t
parameters can be meaningfully varied so that the effect
ness~see Sec. VI A for a definition! still remains more than
96.5%. We limit the range of variation of each parameter
that the effective potential, binding energy and energy fl
remain regular and meaningful for values of the paramete
that range. The natural range over which the parameters
expected to vary is summarized in the first row of Table I

A. Higher order PN dynamics parameter b5

In terms of the inverseu[1/r of the radial effective co-
ordinate r the PN expansion~3.9! of the functionA(u)5
2g00

eff(u) can be written as

A~u!5122u1b3hu31b4hu41b5h@11O~h!#u5

1O~u6!, ~4.1!

where

b352, ~4.2a!

b45
94

3
2

41

32
p2. ~4.2b!

We have included in Eq.~4.1! the information that for the
2PN (}u3) and 3PN (}u4) levels there has been rather m
raculous cancellations to leave only terms linear inh. More-
over, we also know that to all orders~starting from 2PN! the
terms}h0 vanish. We expect that the terms linear inh in the
higher PN coefficients dominate over the nonlinear ones
particular, we expect that in the 4PN coefficienta5(h)
8-6
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TABLE I. Numerical values of the coefficientsbnk .

n bn bn0 bn1 bn2 bn3 bn4

2 0 0.25 20.25
3 2 20.75 1.875 0.875
4 18.6879 1.125 20.3281 217.125 14.3598
5 ? 21.05469 244.523 2324.82 194.214 ?
e
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5b5h1O(h2), the termO(h2) can be neglected. Finally, w
shall work under the simple assumptiona5(h)5b5h, i.e.
with

A~u!5122u1b3hu31b4hu41b5hu51O~u6!.
~4.3!

The main aim of this subsection will be to estimate the pl
sible order of magnitude of the 4PN coefficientb5.

We can start to guess a plausible range of values ofb5 by
the following reasoning. It is plausible to expect that t
function A(u) be a meromorphic function ofu ~or, at least,
be close to a meromorphic function!. The growth withn of
the Taylor coefficientsbn of a meromorphic function is de
termined by the location of the nearest singularity in t
complex plane of the functionA(u). If the nearest singular
ity is located atu51/b, the Taylor coefficientsbn of A(u)
behave, whenn increases, roughly proportionally tobn. We
can always parametrize this behavior~without loss of gener-
ality! as

bn.kbn23. ~4.4!

Using Eq.~4.4! we can deduceb andk from b3 andb4:

k.b352, ~4.5a!

b.b4 /b3.9.3. ~4.5b!

This yields the guess

b5.170. ~4.6!

Note that the values ofb andk from Eqs.~4.5! give also a
‘‘prediction’’ for b2 which is

b2.k/b.0.2. ~4.7!

This type of value is small enough not to make a physi
difference from the exact valueb250 and, moreover, it is
compatible with the fact that the detailed calculation ofb2
gives a cancellation of the typeb250.2520.25 ~see the text
below and Table I!, each term being indeed of order 0.2. Th
is consistent with a power-law growth of the typical cont
butions enteringbn .

A first guess is therefore thatb5 is positive~because this is
true forb3 andb4) and smaller than 200~in round numbers!.
To go beyond this guess we studied in detail the various
contributions to the successivebn , with the aim of detecting
a pattern. We explain in detail our study in the remainder
the subsection.
06402
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1. EÄE„ j … for circular orbits

We work here with the Hamiltonian describing the re
relative motion of the two bodies in their center-of-mass r
erence frame ~the superscript NR denotes a ‘‘non
relativistic’’ Hamiltonian, i.e. the Hamiltonian without the
rest-mass contribution!. It reads

ĤNR~r ,p!5ĤN~r ,p!1
1

c2
Ĥ1PN~r ,p!1

1

c4
Ĥ2PN~r ,p!

1
1

c6
Ĥ3PN~r ,p!1

1

c8
Ĥ4PN~r ,p!, ~4.8!

where

r[
x12x2

GM
, p[

p1

m
52

p2

m
, ĤNR[

HNR

m
. ~4.9!

Let us note that in this subsection~and only here! r and p
denote the canonical coordinates of the real~relative! two-
body dynamics.

Circular motion is defined through the condition

n•p50, ~4.10!

wheren[r /r andr[ur u. Under the condition Eq.~4.10! the
HamiltoniansĤN throughĤ4PN have the structure

ĤN5
p2

2
2

1

r
, ~4.11a!

Ĥ1PN5 (
k50

2

h1
k ~p2!k

r 22k
, ~4.11b!

Ĥ2PN5 (
k50

3

h2
k ~p2!k

r 32k
, ~4.11c!

Ĥ3PN5 (
k50

4

h3
k ~p2!k

r 42k
, ~4.11d!

Ĥ4PN5 (
k50

5

h4
k ~p2!k

r 52k
. ~4.11e!

The momentum squaredp2 can always be decomposed

p2[~n•p!21~n3p!25pr
21

j 2

r 2
, ~4.12!
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wherepr[n•p and

j [u j u, j[
J

mGM
5r3p. ~4.13!

Here J is the conserved total angular momentum of the
nary system in the center-of-mass reference frame.

The Hamiltonian~4.8!, after replacingp2 by j 2/r 2, be-
comes a function ofj andr only. This function has to fulfill,
by virtue of the equations of motion~for circular motionpr
50), the condition

]ĤNR~ j ,r !

]r
50. ~4.14!

Equation~4.14! gives the link betweenr and j along circular
orbits. We have iteratively solved Eq.~4.14! for r as a func-
tion of j, and have substituted this into the Hamiltonian~4.8!.
We thus have obtained the relation, valid along circular
bits, between the center-of-mass energyE[ĤNR(r ,p) of the
system and the system’s angular momentumj. To simplify
displaying this relation we show it with the coefficientsh1

k of

the 1PN HamiltonianĤ1PN replaced by their explicit genera
relativistic values. Then the formula reads

E52
1

2 j 2 H 11
1

4
~91h!

1

j 2
1S 1622(

k50

3

h2
kD 1

j 4

1S 152224h28(
k50

3

~k13!h2
k22(

k50

4

h3
kD 1

j 6
1F1700

2584h136h214(
k50

3

~k13!~3 h22724 k!h2
k

1S (
k50

3

~k13!h2
kD 2

28(
k50

4

~k14!h3
k22(

k50

5

h4
kG 1

j 8J .

~4.15!

2. EOB potential A„u… calculated from EÄE„ j …

In the effective-one-body approach the real ‘‘no
relativistic’’ energy E is the following function of the
effective-one-body radial potentialWj (u):

E5
1

h
$A112h~AWj~u!21!21% , ~4.16!

where

Wj~u!5A~u!~11 j 2u2!. ~4.17!

The functionA(u) has a perturbative expansion inu:

A~u!511a1u1a2u21a3u31a4u41a5u5. ~4.18!

Along circular orbits the effective radial potentialWj (u)
attains its minimal value,

]

]u
Wj~u!50. ~4.19!
06402
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We have iteratively solved Eq.~4.19! for u as a function of
the small parameter 1/j 2 and have substituted this relatio
into the right-hand side of formula~4.16!. Next we have
again expanded the right-hand side of Eq.~4.16! in 1/j 2. In
such a way we have obtained the relationE5E( j ) predicted
by the general EOB function~4.18! in which the coefficients
at different powers of 1/j 2 depend on the numbersan enter-
ing the functionA(u). By comparing these coefficients wit
the respective coefficients of the expansion~4.15! we are
able to~iteratively! expressan in terms of the coefficientshn

k

of the Hamiltonian~4.8!.
After this matching between the generic Hamiltoni

~4.8! and the guessed EOB expression~4.18!, each of the
numbersan can be represented as a sum of terms wh
depend on the coefficients of the different PN Hamiltonia
E.g., a25a201a21, wherea20 depends only on the coeffi
cients of the Newtonian HamiltonianĤN anda21 depends on
the coefficients of the NewtonianĤN and the 1PN Ĥ1PN
Hamiltonians. More generally, we have

an5 (
k50

n21

ank , ~4.20!

where an0 depends only onĤN , an1 depends onĤN and
Ĥ1PN, an2 depends onĤN , Ĥ1PN andĤ2PN, etc. The values
of the different coefficientsank are as follows~here again, to
simplify formulas, the coefficientsh1

k of the 1PN Hamil-

tonian Ĥ1PN have been replaced by their general relativis
values!:

a10522, ~4.21a!

a205
1

4
~91h!, ~4.21b!

a2152
1

4
~91h!, ~4.21c!

a305
1

16
~227212h1h2!, ~4.21d!

a315
1

16
~267130h1h2!, ~4.21e!

a3252(
k50

3

h2
k , ~4.21f!

a405
1

64
~54172h211h212h3!, ~4.21g!

a415
1

64
~2197311301h255h22h3!, ~4.21h!

a425 (
k50

3

~32h18k!h2
k , ~4.21i!
8-8
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a4352(
k50

4

h3
k , ~4.21j!

a505
1

1024
~224321080h1210h22104h3121h4!,

~4.21k!

a515
1

1024
~22010171250392h246630h21536h3

115h4!, ~4.21l!

a525
1

8 (
k50

3

~2071384k1128k22~2131128k!h

17h2!h2
k2 (

k51

3

kh2
k(

k50

3

~61k!h2
k , ~4.21m!

a535 (
k50

4

~52h18k!h3
k , ~4.21n!

a5452(
k50

5

h4
k . ~4.21o!

Because the Hamiltonians from Newtonian through 3PN
completely known, the coefficientsa1 througha4 are fully
known. They read

a1522, ~4.22a!

a250, ~4.22b!

a352h, ~4.22c!

a45S 94

3
2

41

32
p2Dh. ~4.22d!

Let us note thata3 anda4 are both proportional toh. Many
remarkable cancellations occurred to cancel the terms
portional toh2 andh3. As for the 4PN-level coefficienta5
5(a5k its first three partial contributionsa51, a52, a53 are
known, but its last coefficienta54 is unknown.a5 is a poly-
nomial of order at most 4 inh with a vanishing term}h0

~this can beexplicitly checked as the two-body Hamiltonia
in the test-mass limith50 is known up to all orders!. As we
said above, we expect, as it is the case at lower orders, th
a5 the term}h1 will dominate. Let us denote

ank5bnkh1O~h2!, n>2. ~4.23!

The numerical values of the parametersbnk are given in
Table I. After studying the various possible patterns exh
ited by Table I we decided to focus on the fact that t
columnbn1 of Table I seems to give a good approximation
the final, total value ofbn . This would suggestb5.250 as a
possible value.

Let us now display a moreexplicit form ~for the parts
which are known! of the 4PN coefficienta55(k50

4 a5k . To
06402
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do this we replace in Eqs.~4.21f!–~4.21o! the 2PN and 3PN
coefficientsh2

k andh3
k by their general relativistic values. Ou

of the 4PN coefficientsh4
k the leading kinetic termh4

5 is fully
known ~as it is given by the expansion of the free Ham
tonian(aApa

21ma
2); for the rest of the terms only their part

}h0 are known~they describe the test-mass limit of the tw
body dynamics!. We parametrize our ignorance of the pa
O(h) by introducing some quantitiesx4

k , k50, . . . ,4.Thus
we can write

h4
052

1

16
1h x4

0 , ~4.24a!

h4
15

105

32
1h x4

1 , ~4.24b!

h4
25

105

32
1h x4

2 , ~4.24c!

h4
35

13

8
1h x4

3 , ~4.24d!

h4
45

45

128
1h x4

4 , ~4.24e!

h4
55

7

256
~123h!~126h19h223h3!. ~4.24f!

Collecting all this partial information together one gets

a55S 571

4
2

197

64
p2Dh1S 41

64
p22

1885

96 Dh22
27

16
h31

35

64
h4

12h(
k50

4

x4
k ~4.25a!

5112.3701h213.3127h221.6875h310.5469h4

12h(
k50

4

x4
k . ~4.25b!

Note that the expression confirms that the terms}h2, h3

andh4 are sub-dominant.
Based on the above results we guess the range of p

sible values for the parameterb5 to be @0,250#. However,
while exploring robustness we would like to varyb5 beyond
this reasonable range subject to the condition that the po
tial remains regular. This condition implies thatb5>250 as
smaller values ofb5 introduce poles in the Pade´ approxi-
mated version ofA(u). Note, however, that all the known
successive PN approximations suggest that thebn’s are all
positive so that the consideration of negative values ofb5
test robustness against extreme behavior of the potentia

B. Location of the pole in energy fluxcP

In Ref. @11# it was argued that we should expect
~simple! pole in the flux function as a function of
8-9
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v[~Mv!1/3, ~4.26!

wherev is the orbital frequency, at the location of the lig
ring. It was further shown that factoring out the pole fro
the post-Newtonian expansion of the flux before construc
its Pade´ approximation accelerates convergence to the fit
the numerical flux. What happens when we ‘‘flex’’ the pos
tion of this pole away from its known test-mass value, or
conjecturedh-dependent 2PN location? In the test-mass
proximation, that ish→0, the location of the pole in the flux
function is atvpole

0 51/A3. Whenh is different from zero
Ref. @11# argued that a good approximation to the location
the pole is given by

vpole
h 5

1

A3S 11
1

3
h

12
35

36
h
D 1/2

.vpole
0 @110.16 ~4h!#.

~4.27!

The location of the pole can significantly change the value
the Pade´ approximant of the flux function in the physicall
relevant region of the variablev ~see below!. For this reason
it is important to move the pole away from its predict
value and assess how such a shift would affect the de
ability of the signal. In this work we modify the location o
the pole by introducing the parametercP :

vpole
cP 5

vpole
h

11cP
. ~4.28!

Based on the fact thatvpole
h differs, whenh51/4, from the

test mass valuevpole
0 by .16%, ana priori plausible range

of variation ofcP is 60.2. We also explored larger variation
of cP , namely in the range@20.5,10.5#, which in the com-
parable mass case amounts to varying the original 2PN
from 0.6907 in the range@0.4605,1.3814#. Actually, values
of cP smaller than20.2 seems to have little effect on th
overlaps.@Note that whencP tends to21 this pushes the
pole tovpole→1`.# If cP is taken to be greater than abo
0.5 then the location of the pole in the flux will be atv
,v lso so that we will not be able to compute the phasing
the waves. This is why we restrict the values ofcP to be
smaller than about 0.5.

C. Unknown third post-Newtonian energy flux u

To estimate the possible range for the unknown param
u, let us go back to Ref.@24# where this arbitrariness i
pointed out and discussed. The parameteru is the linear
06402
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combinationu5j12k1z of the three coefficientsj, k and
z associated with three different kinds of terms. From E
~10.6! of Ref. @24# and more explicitly from work in progres
@27# ~which uses the generalized Hadamard regularization
Ref. @16#! it follows that the value ofu contains a logarith-
mic term in addition to a term of approximate value21.
This motivates us to suggest that a variation range by a fa
of order 10~with both positive and negative signs! is a very
generous range foru, which is expected to be ‘‘of orde
unity.’’

How large can the magnitude ofu be without introducing
any spurious poles in the P approximant of the flux? T
answer is that the variation ofu is bounded from below a
u525 because foru,25 there is a spurious pole. How
ever, for valuesu.0, even as large as 105, there seems to be
no irregular behavior of the P-approximant flux. Thus, in o
test of robustness we take the minimal range ofu to be
@25,10# and we also explore the values ofu.10.

D. Modification of the two-body Hamiltonian: z2 or z2

The 3PN extension of EOB opened the possibility of
troducing two free parametersz1 andz2. It is clear that tak-
ing a non-zero value ofz1 goes against the spirit of the EO
resummation, because it takes away a part of the basic E
radial potentialA(u) to replace it by a modification of the
‘‘centrifugal part’’ of the potential.@See Eqs.~3.3!–~3.6!.#
Distributing the 3PN effects betweenA(u) and the centrifu-
gal potential is undesirable because it goes against ‘‘res
ming’’ all effects in one object: namelyA(u). Therefore we
continue, as in@5#, to fix z150 and this choice simplifies the
constraint Eq.~3.2! to

4z213z3524S 12
3

4
h Dh. ~4.29!

This leaves us with only one 3PN flexibility parameter link
to this possibility and it is convenient to parametrize it
introducing az2 such that

z25
3

4
z2z3

f , ~4.30a!

z35~12z2!z3
f , ~4.30b!

where

z3
f [2~423h!. ~4.31!

Making use ofz150, and the above parametrization, th
Hamiltonian Eq.~3.3! reads
Ĥeff~r ,pr ,pf ;z2!5AA~r !H 11A~r !D~r ;z2!21 pr
21

pf
2

r 2
1

z3
f

r 2 F z2S 2
1

4
pr

41
3

4

pf
2 pr

2

r 2 D 1pr
4G J , ~4.32!
8-10



le
-
g

im
ud
to

’

e
h
f-

er
it

le
to
lit
y
w

n-

x-

iral
d to
ght
de-

ine
of
uent
if-
lly
lly

alue

o-

eak

s
ich
lue
ing
rk,
al
ear-
ot
se

ve-
m-
the
We
tent
nd
of
ri-

the
a-
the
ur
ust-

on.

of
ost

GRAVITATIONAL WAVES FROM BLACK HOLE BINARY . . . PHYSICAL REVIEW D 67, 064028 ~2003!
where

A~r !512
2

r
1

2h

r 3
1

a4

r 4
, a45S 94

3
2

41

32
p2Dh,

~4.33a!

D~r ;z2!21511
6h

r 2
1

4~2623h!h23~423h!z2

2r 3
.

~4.33b!

The values ofz2 equal to 0 and 1 correspond to the simp
choicesz250 andz350, respectively. Its variation is of or
der unity to cover this interval and we take its natural ran
to be @22,2#.

E. Flexibility parameter for non-adiabaticity f NonAdiab

The current version of EOB templates chooses the s
plest treatment of non-adiabatic effects. In the present st
we would like to look at a modification of this choice and
this end we introduce the parameterf NonAdiab in the expres-
sion for the angular damping forceF̂f appearing in Eq.
~3.8d!. More precisely, we modify the current ‘‘minimal’
radiation reaction using

F̂f→F̂fF12 f NonAdiabS 11
~Au2!8

A8
pf

2 D G . ~4.34!

The combination of factors factored byf NonAdiab vanishes in
the adiabatic approximation@see Eq.~3.14a!#. The assump-
tion of adiabaticity is valid for most of the inspiral regim
and deviates from it only close to the last stable orbit. T
modification~4.34! is a simple way of parametrizing the e
fect of different choices in the definition ofF̂f for orbital
motions which start deviating from adiabaticity. One gen
ally expectsf NonAdiab to be a parameter of order unity and
sufficesa priori to vary it in the range@21,11#. While this
is the primary goal, we explore a larger range off NonAdiab in
our study of robustness.

F. Non-circular orbits f NonCirc

The current version of EOB templates also uses a simp
treatment of non-circular effects, which we would like
reexamine here. This is accomplished via another flexibi
parameterf NonCirc in the angular damping force. We modif
the force in a manner similar to the previous case; that is
use

F̂f→F̂fF11 f NonCirc

pr
2

pf
2 u2G . ~4.35!

As in the previous case, varyingf NonCirc in the range@21,
11# is expected to be a plausible way of mimicking no
minimal choices of the definition ofF̂f for orbital motions
which start deviating from circularity. However, we do e
plore a larger range off NonCirc in our study of robustness.
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G. Transition between plunge and coalescencef transition

In the EOB approach the equations representing insp
are continued through the plunge and eventually matche
the quasi-normal modes of the final black hole near the li
ring. The exact frequency where this happens cannot be
cided by the formalism and hence one would like to exam
the effect on the waveform by changing the frequency
transition between plunge and coalescence and subseq
ringing or, equivalently, stopping the plunge at a point d
ferent from the point where the EOB waveform is natura
terminated. In the EOB approach the waveform is natura
terminated when the radial coordinate gets close to the v
r light ring given by a solution to Eq.~3.15!. In the current
paper we alter the radial location of the light ring by intr
ducing the parameterf transition given by

r light ring→r light ring~11 f transition!. ~4.36!

Negative values of the parameterf transitionare rather mean-
ingless since the EOB approximation is expected to br
down for values of the radial coordinate less thanr light ring .
We therefore allow only positive values and varyf transition in
the range@0,1#. Note, however, that the variation in thi
parameter is going to seriously affect those systems wh
merge in a detector’s sensitivity band since a positive va
for this parameter means that we will in effect be discard
power in the final phase of the signal. Indeed, in this wo
we do not match the plunge waveform to the quasi-norm
mode expected to ensue soon after. This is because our
lier work in Ref. @7# has shown that these modes do n
contribute significantly to the SNR for those systems who
plunge occurs in the detector’s sensitivity band.

V. HOW ROBUST ARE EOB TEMPLATES?
VISUAL COMPARISON

In this section we discuss the robustness of EOB wa
forms by comparing the standard fiducial 3PN EOB te
plates with flexed waveforms constructed by turning on
flexibility parameters discussed in the previous sections.
make two different types of comparisons to gauge the ex
to which various unknown flexibility parameters at third a
fourth post-Newtonian orders might affect the dynamics
the two bodies and the radiation they emit. Our first compa
son consists of a visual inspection of the behavior of
relevant physical quantity when a particular flexibility p
rameter is varied. This gives us an idea of the nature and
extent of the variation involved while testing robustness. O
second comparison goes beyond qualitative tests of rob
ness by quantitatively measuring thespanof EOB templates.
More precisely, it consists of the computation of thefaithful-
nessandeffectualnessof the fiducial EOB template with the
flexed waveform and is explored in the subsequent secti

A. Fourth post-Newtonian dynamics

In Sec. IV A we introduced the parameterb5 which en-
capsulates the unknown physical effects in the dynamics
the two bodies at orders higher than the 3PN order. The m
relevant quantity that it affects is the potentialA(u;b5)
8-11
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which occurs in the effective one-body Hamiltonian and
effective metric. Among other thingsA(u) governs the rate
of inspiral of the bodies and therefore the phase of the wa
form.

We begin our visual comparison by plotting the effecti
potentialA(u) at various PN orders including the 4PN ord
for two extreme values ofb5 (b55250 andb55500). Re-
call that u51/r .GM/ux12x2u and thereforeu→0 denotes
the region when the two bodies are infinitely separated
u.0.5 denotes the region when the two black holes
‘‘touching’’ each other. The sensitivity of ground-based inte
ferometers is best in the frequency range 40–400 Hz. F
candidate system of total massM520M ( this frequency
range corresponds to a range for the frequency-related
able v, Eq. ~4.26!, that begins atv50.2313 and terminate
beyond v lso

2PN50.4457 @11# or f lso5286 Hz. Equivalently,
this implies a range for the radius-related variableu @using
Eqs. ~3.12!–~3.13! to connect v and u], starting at u
50.05335 orr 51/u518.7. The gray-shaded region corr
sponds, when the total massM520M ( , to the frequency
band @65,235# Hz, centered at 150 Hz, in which the SN
accumulated for inspirals is more than 80% of the total S
in the entire LIGO band. For the system (10M (,10M () the
above frequency band corresponds to 0.2719<v<0.4174,
equivalently 0.07372<u<0.1777~or 13.56>r>5.63). The
dashed vertical line atulso50.2065 near the shaded regio
corresponds to the radial coordinater lso54.84 at which the
system reaches the last stable circular orbit.

It is important to note that the~dashed! vertical line atulso
is invariant for systems of different masses but the sha
region will change with the total mass, moving to the rig
with increasing mass. The sensitivity of the instrument
best for those systems for which the LSO is close toM
;20M () or within (M;30M () the shaded region.

From Fig. 1 we draw three important conclusions:~a! The
potentials predicted by the two extreme values ofb5 used in
our study encompass the variations implied by the sec
and third post-Newtonian orders.~b! In the region where the
detector is most sensitive to binary black holes the agreem
between the different models is pretty good.~c! Even con-
sideration of extremely large positive values of the 4PN
rameterb5 has little effect on the functionA(u). @This is due
to the fact that, after Pade´ing, the functionA(u) has a limit
whenb5→`.# Even variations beyond reasonable values
b55250 andb55500 lead to an effective potential that
within the range of variation caused by different po
Newtonian orders. These observations already indicate
we should expect the fiducial EOB template to mimic flex
waveforms reasonably well.

B. Unknown third post-Newtonian energy flux u

As mentioned in Sec. II the gravitational energy flux
third post-Newtonian order has one undetermined param
u. We also argued in Sec. IV C that the magnitude ofu
should be of order 1. Since the flux plays a crucial role in
phasing of the waves it is important to measure the effec
this parameter. In other words what fraction of the signal-
noise ratio will be lost by settingu50 in our templates while
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in reality u is different from zero? Obviously, the answe
depends on the extent by whichu is different from zero. We
vary u from 25 to 110 and plot the Newton-normalized
flux as a function of the invariant velocity parameterv. As in
Fig. 1 here too the shaded region corresponds to a freque
band@65,235# Hz around 150 Hz corresponding to the ran
0.2719<v<0.4174 when the total massM520M ( ~as as-
sumed in Fig. 1!. The dashed vertical line is of course th
‘‘velocity’’ at the last stable orbitv lso50.446 corresponding
to two systems of equal mass~independently of the value o
the total mass!.

Figure 2 indicates the extent of variation caused
changing the value ofu. Clearly, negative values ofu have a
larger impact on the flux than positive values. Indeed,u5
25 leads to much greater variation in the flux than evenu
5110. The main message from Fig. 2 is that by varyingu
over the range25<u<10 in our study of faithfulness and
effectualness we would in effect take into account the pos
bility that the real gravitational wave flux be rather differe
from that assumed in the effective one-body approximati
~Note, however, that the differences within the most relev
shaded region are only;610%.! The variation inu we
consider is far greater than the variation of62 in the param-
eter û considered in Ref.@2#. Note thatû is related to ouru
via

û[u1
1987

1320
. ~5.1!

FIG. 1. The potentialA(u) is plotted as a functionu51/r
.GM/ux12x2u at various PN orders. By varying the 4PN param
eter b5 we more than cover the behavior of both the second a
third post-Newtonian orders. In all the figures, for a total massM
520M ( , the gray-shaded region corresponds to the freque
band@65,235# Hz, centered at 150 Hz, in which the signal-to-noi
ratio accumulated for inspirals is more than 80% of the total SNR
the entire LIGO band. The corresponding range inu is 0.07372
<u<0.1777 andr is 13.56>r>5.63. The dashed vertical line a
ulso50.2065 near the shaded region corresponds to the radial c
dinater lso54.84 at which the system reaches the last stable circu
orbit.
8-12
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GRAVITATIONAL WAVES FROM BLACK HOLE BINARY . . . PHYSICAL REVIEW D 67, 064028 ~2003!
Indeed our range corresponds to23.49<û<11.5.

C. Flexibility parameter cP

In Fig. 3 we plot the standard P-approximant flux at 3P
order in the equal mass case~i.e.,h50.25, solid line!. In the
notation introduced in Sec. IV B this curve corresponds
cP50. The effect of changing the location of the pole

FIG. 2. Variation in the~Newton-normalized! energy flux emit-
ted by the system due to the 3PN parameteru being different from
zero. Clearly, negative values ofu have a greater effect on th
behavior of the flux as compared to the positive values.

FIG. 3. The~Newton-normalized! energy flux is plotted for dif-
ferent locations of the pole parametrized bycP . We vary the loca-
tion of the pole by about 50% on either side of its nominal val
predicted by the second post-Newtonian binding energy. The ra
of cP is perhaps far greater than what one could expect on phys
grounds and causes a great variation in the flux function. Note
for cP50.5 the pole is moved tovpole50.4605 which is near but
still beyond the LSO.
06402
o

shown by plotting the energy flux for four values of th
parametercP . We note that the curves change monotonica
as the value ofcP is changed, moving to the right for nega
tive values ofcP and to the left for positive values. We hav
changed the location of the pole by rougly 50% on eith
side of its nominal value. As mentioned before this amou
to varying the light ring value ofv in the range 0.4605
<v light ring<1.3814. No calculation we are aware of sugge
a larger variation in the location of the pole than conside
here. The curves do show a rather large variety indicat
that the location of the pole isa priori as important as the
other two parameters discussed before.

VI. THE SPAN OF THE 3PN EOB BANK: OVERLAP OF
FIDUCIAL TEMPLATE WITH FLEXED WAVEFORM

A. Faithfulness and effectualness

The ultimate tool for testing the robustness is of cou
the overlap of template waveforms with flexed waveform
Given a fiducial templateT(t;pk) and a flexed signa
S(t;pl ,pa) their overlapO is defined as

O~T,S![
^T,S&

A^T,T&^S,S&
, ~6.1!

where the scalar product is defined as usual by the Wie
formula

^X,Y&[2E
0

` d f

Sh~ f !
@X̃~ f !Ỹ* ~ f !1X̃* ~ f !Ỹ~ f !#. ~6.2!

Here ã denotes the Fourier transform of functiona(t), that
is, ã( f )5*2`

` a(t)exp(22pift)dt, a* ( f ) denotes complex
conjugation ofa( f ) andSh( f ) is the~one-sided! noise spec-
tral density of the detector. In computing overlaps we use
initial LIGO noise spectral density of Ref.@7# given by

Sh~ f !51.44310246F S 4.64f

f k
D 256

1S f

f k
D 24.52

13.25

12S f

f k
D 2GHz21, ~6.3!

where f k5150 Hz. Since the noise curve rises very stee
at low frequencies the lower limit of the integral in Eq.~6.2!
does not have to be zero. It suffices to choose a lower limi
40 Hz so as not to lose more than 1% of the overlap
binaries with total massM.50M ( .

FaithfulnessF is defined as the overlap maximized on
over the extrinsic parameters of the template, which in
case are simply a reference timet ref at which the template
waveform reaches a certain frequency~say 40 Hz! and the
phasef ref of the signal at that time:

F5 max
tref ,fref

uO~T,S!u. ~6.4!
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DAMOUR et al. PHYSICAL REVIEW D 67, 064028 ~2003!
EffectualnessE is defined as the overlap maximized ov
not only the extrinsic parameters but all the intrinsic para
eters as well, which in our case are the two massesm1 and
m2 of the binary:

E5 max
tref ,fref ,m1 ,m2

uO~T,S!u. ~6.5!

B. Matched filtering and signal-to-noise ratio

In searching for signals of known shape, such as chirp
radiation from black hole binaries, one employs the meth
of matched filtering. For signals of known pattern, match
filtering is, in Gaussian noise background, a statistically
timum strategy in which a data analyst computes the cr
correlation of the template waveformT(t) with the detector
outputX(t). The analyst will not know before hand when th
signal arrives or what its parameters are. Therefore, it is n
essary to take several copies of the template correspondin
different parameter valuespk and compute the correlation o
each of those templates with the detector output at diffe
time stepst0 ,t1 , . . . ,tk , . . . . If detector output contains
sufficiently strong signal resembling one of the templ
waveforms then the cross-correlation will exceed the r
value of the correlation by a large amount, thereby gene
ing a trigger for the analyst. It is well known that the signa
to-noise ratior of a templateT with the detector output tha
contains a signalS of known shape is given by

r[
s

n̄
5

u^T,S&u

^T,T&1/2
5uO~T,S!u^S,S&1/2. ~6.6!

Here ^S,S&1/2 is the signal-to-noise ratio which would b
achievable by matched filtering if the detector output w
correlated with the exact replica of the signal hidden in
noise modulo the amplitude which is irrelevant. The abo
equation tells us that when we do not know the exact sh
of the signal, the signal-to-noise ratio gets degraded and
a fraction equal to the overlap of the template used in
search with the exact signal expected to be present in
detector output is what is recoverable. Thus, while matc
filtering is an excellent technique in detecting signals bur
in noise, dephasing of the template relative to the signal
quickly degrade the quality of the output. This can be read
seen from Eq.~6.2! where the Fourieramplitudesof the tem-
plate and the signal are multiplied together before being
tegrated over the frequency. These amplitudes coherently
up only when the phase of the template coincides with tha
the signal at all points in the frequency space. Even a sm
initial difference in phase can accumulate and kill the in
gral since the signals last for a large number of cycles—m
than 60 cycles for (10M (,10M () black hole binaries and up
to 1000 for NS-NS binaries in the sensitivity band of t
LIGO interferometers. This is the motivation for buildin
template waveforms that are as close to the true general
tivistic signal as possible. Note, however, that the weight
of the overlap integral Eq.~6.2! by the inverse of the noise
spectral density means that not all cycles in the signal
the template are equally important. Reference@31# intro-
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duced the concept of ‘‘useful cycles’’ as a measure of
effective number of cycles which dominate the overlap in
gral. For instance, in the case of a (10M (,10M () system the
number of useful cycles is.7.6. This means that it is crucia
to model the phasing of the signal during the;8 cycles
around the peak of the SNR logarithmic frequency distrib
tion, i.e. aroundf P.165 Hz, but that a less accurate mod
of phasing for the other cycles may be acceptable.

C. Span of a template bank

Stringent as it may sound, matched filtering is not tota
restrictive when dealing with a template bank rather tha
single template. To explain how a template bank is not
restrictive as a single template we introduce the notion
span of a template bank.In the geometrical language of sig
nal analysis@28# templates can be thought of as vectors—o
vector for every set of values of the parameterspk . If the
signal depends onK parameters then the set of all vectors r
over aK-dimensional manifold. Equation~6.2! serves as a
scalar product between different vectors and induces a n
ral metricgkm on the template manifold with the paramete
serving as natural coordinates:

gkm[^Tk ,Tm&, Tk[
]T

]pk
. ~6.7!

Though each template is itself a vector in the vector spac
all detector outputs, the set of all templates does not form
vector space. Therefore, when dealing with the problem
constructing a bank of templates one is really working w
only a subspace of the vector space. Moreover, one does
work with the full template space either but, like in quantu
mechanics, with the set ofrays, i.e. the set of vectors modulo
their lengths, which can be realized as the set ofnormalized
vectors. In other words, we work on the unit sphere in
initial vector space. When considering a submanifold on t
sphere which isnot the intersection of a linear space with th
unit sphere the metricgkm gives only a local approximation
to the vector product of the larger space, but it does
endow the finite-dimensional submanifold with the corre
projection of the metric structure of the larger space.

In our search for gravitational-wave signals we choos
grid of templates on the template manifold. If the templa
are an exact replica of the expected signal then the densi
the grid points is so chosen that no signal vector on
manifold has an overlap with the ‘‘nearest’’ grid poin
smaller than a certain fraction called theminimal matchMM
@29,30#, typically chosen to be either MM50.965 or possibly
MM50.95:

max
Template bank

uO~T,S!u>MM. ~6.8!

The above inequality will be satisfied not only for sign
vectors on the template manifold but also vectors that areoff
the manifold but close to it. In other words, the templa
bank obtains a minimal match for all signals located in
infinite dimensional ‘‘slab’’ around theK-dimensional tem-
plate manifold but sufficiently close to it. This slab defin
8-14
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TABLE II. Robustness of the 3PN EOB model with respect to parametersb5 , u, z2 andcP . We give thefaithfulnessF, effectualness
E, the total massM 8 and the symmetric-mass ratioh8 that maximize the overlap while finding effectualness. We vary each parameter i
nominal range but also quote extreme values of the parameters up to which an overlap of 95% or greater is obtained. Some para
exampleb5, will be bounded either from below or above since the physical quantity it participates in may be irregular for such
thereby affecting gravitational-wave phasing.
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the span of the considered template bank, sayS @T,MM#.
Here, for simplicity we introduce one flexibility parameter
a time and explore successively the slab along the direct
defined by each extra parameter. It therefore suffices to c
sider only those signals that live in a (K11)-dimensional
space around the template manifold, which particularK
11, depending on the flexibility parameter in question. T
spanS @T,MM# of a template bank along a given flexibilit
direction is then defined as the maximum domain in the c
responding (K11)-dimensional space within which the tem
plate bankT obtains a given minimal match MM. In thi
work we estimate this domain by computing the range of
flexibility parameters within which the minimal match
achieved between the fiducial template and flexed wa
forms.

When the template is not a true representation of the
nal, the signal vectors run over a manifold that does
exactly coincide with the template manifold. What is r
quired for signal detection is that the span of the temp
bank includes the signal manifold. Of course, if the minim
match is sufficiently small then any template bank wou
span the signal manifold. Successful signal detection, w
out undue loss of signals, requires the signal manifold to
a submanifold ofS @T,0.95# ~i.e., 95% minimal match! or,
better, ofS @T,0.965# ~i.e., 96.5% minimal match!.

Finally, let us note that while the span is defined w
respect to a continuum of template bank, in reality we w
have to be content with a finite lattice of templates. The
fore, it is not guaranteed that the~maximum of the! overlap
of a finite template bank with an arbitrary flexed sign
within the spanS @T,0.965# will be greater than 0.965. If the
template lattice is chosen such that the minimal match i
least 0.965 then the maximum overlap reached within
spanS @T, 0.965# of the template bank might be reduced
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0.9652.0.93. So the actual loss in the event rate might
@12(0.9652)3#.20%.

D. Span of third post-Newtonian EOB template bank

The main conclusion of this study is that the standard 3
EOB template bank, without any additional paramete
spansthe extensions separately implied by theseven flexibil-
ity parametersthat account for theunmodelled effects in the
EOB formalism, affecting both the dynamics and radiati
flux, This is demonstrated in Tables II and III where we ha
considered two archetypal binaries expected to be obse
by initial interferometers—the first consisting of a pair
10M ( black holes and the second consisting of two 15M (

black holes. In Table II we have explored the faithfulness a
effectualness of the 3PN EOB template bank~our fiducial
template! with respect to the four important flexibility pa
rametersb5 , cP , u, andz2 and in Table III the same, but fo
the less important flexibility parametersf NonAdiab, f NonCirc,
and f transition.

First, we discuss the results obtained by varying the
rameters over the range in which they are expected to
Clearly, the 4PN parameterb5 has the strongest influenc
followed by the parameterscP ,u and z2. Indeed, the faith-
fulness is not always larger than the fiducial minimal ma
of 0.965 when these parameters take values over the ran
which they are expected to vary. However, f
(15M (,15M () systems theeffectualnessdoes easily mee
the usual requirementE.0.965 forall valuesof b5 @includ-
ing b5.500, in view of the fact, visible on Fig. 1, tha
A(u;b5) monotonically reaches a smooth limit asb5→
1`]. In the case of (10M (,10M () systems the situation is
a bit more involved:~1! when b5&200, the usual require
ment on effectualness is met, but~2! when b5.200, the
8-15
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TABLE III. Robustness of the 3PN EOB model with respect to parametersf NonAdiab, f NonCirc, and f transition. We give thefaithfulnessF,
effectualnessE, the total massM 8 and symmetric-mass ratioh8 that maximize the overlap while finding effectualness. We vary e
parameter in the nominal range but also quote extreme values of the parameters up to which an overlap of 95% or greater is ob
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effectualness drops slightly below 0.965. However, for
‘‘plausible’’ value b55250 ~see Sec. IV! the overlap is still
larger than 0.963, and even forb55500 ~and probably for
any largerb5 for the reason mentioned above! the overlap is
still as large as 0.95. Note also that, in many cases, faith
ness is itself larger than the minimal match and effectualn
is close to 1.

In view of this special sensitivity tob5, we explored in
detail the b5 dependence of overlaps and found a sim
modification of the standard 3PN EOB templates that allo
for meeting the desired requirementE.0.965 forall values
of b5. If one constructs a fiducial template bank by using
EOB potential the ‘‘b5-flexed’’ function A50(u)
[A4PN(u;b5550) @instead ofA3PN(u)], we have found that
it leads to effectualness larger than 0.965 in all cases@and in
particular for the (10M (,10M () system and250<b5
<250]. Furthermore, as illustrated in Table IV, the span
this new fiducial template bank now extends over all
values ofb5 : 250<b5<2000. In the case of the less impo
tant parametersf NonAdiab, f NonCirc, and f transition, we observe
that the faithfulness is itself larger than our minimal mat
except whenf transition51 for the (15M (,15M () system.

As mentioned in Sec. IV we have also explored robu
ness beyond the range in which the flexibility parameters
expected to lie and yet achieve the required effectualnes
Table IV we summarize the range over which the differe
parameters are expected to vary together with the range
which they can be varied yet maintain an effectualness
0.965. This table shows that the span of the 3PN EOB b
of templates~or for that matter, theb5550-flexed 3PN one!
in the other flexibility directions extend well beyond the e
pected plausible ranges.
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E. How could the match be good when the flux functions look
so very different?

In Sec. V we noted that the behavior of the energy fl
FPn

(v)/FN(v) could be significantly different from thei

usual behavior when the flexibility parameters are set to
treme values in their expected range. When the flux is
different how is it still possible to achieve good effectua
ness?

The answer lies in several aspects of the problem: F
one should note that, after factorization of the crucial ‘‘qu
drupolar flux’’ }v10, the changes in the Newton-normalize
flux are less than 10%. Second, one should remember
for the massive binaries considered here, the numbe
‘‘useful’’ gravitational-wave cycles @31# corresponding
roughly to shaded regions in Figs. 2 and 3 is quite mode
(&8). Third, one should note that one of the crucial thin
affected by the flux is the total chirp time, or the duration,
the waveform. For instance, if the flux increases more r
idly when one of the flexibility parameters is nonzero, as
the case ofu525, then the system loses energy more ra
idly and therefore the waveform lasts shorter. However, t
shortening of the waveform can also be achieved by mak
the binary heavier~or lengthened by making asymmetric b
naries of the same total mass or simply lighter binarie!.
Recall that the effectualness is obtained by maximizing
overlap over both the extrinsic and intrinsic paramete
Thus, in the process of maximization one can absorb
change in time scale by choosing a binary of different to
mass and mass ratio. This explanation is borne out b
comparison of the trend of the curves in Figs. 1, 2 and 3 w
the corresponding rows in Table II. For instance, effectu
ness foru.0 ~smaller flux at a givenv than whenu50)
pan for
in
TABLE IV. The natural range for the flexibility parameters expected on physical grounds is shown together with the actual s
which the effectualness is greater than 0.965 for equal mass binaries of total mass 20M ( and 30M ( . As discussed in the text the span
the b5 direction refers to a bank of templates constructed with slightly modified EOB potential:A50(u).

Range/Span b5 cP u z2 f NonAdiab f NonCirc f transition

Expected range @0,250# @20.2,0.2# @25,10# @22,2# @21,1# @21,1# @0,0.5#

SpanS(T,0.965) @250,2000# @20.5,0.5# @25,.1000# @25,100# @220,15# @250,50# @0,1#
8-16
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GRAVITATIONAL WAVES FROM BLACK HOLE BINARY . . . PHYSICAL REVIEW D 67, 064028 ~2003!
requires a system of total mass lighter than the original s
tem while for cP.0 ~greater flux at a givenv than when
cP50) one requires a heavier system than the original o

A final comment: The insensitivity of the effectualness
the location of the pole can be interpreted to mean that
factorization by the pole is not as crucial an element of
gravitational-wave flux resummation as perceived in@11#.
This suggests that it would be interesting to study the per
mance of templates which do not use such a factorizatio
the flux function. We leave this study to future work.

F. Systematic versus statistical errors in the estimation of
parameters

Together with the value of the effectualness, the tab
also show the template parameters that obtain the maxim
overlaps. A quick inspection reveals that the symmetric m
ratio h of the template that obtained the maximum match
either equal to the actual value of 1/4 or when different fro
1/4 the fractional difference is less than 0.1%. This is pr
ably explained by the following: We study templates as fu
tions of m1 andm2. But the functionT(m1 ,m2) is invariant
under the permutationm1↔m2 and therefore the overla
O(m1 ,m2)5^T(m1 ,m2),S& always reaches an extremu
~along the linesm11m25const) at m15m2, i.e. at h
51/4. If these extrema are all maxima~as a function of the
ratio m1 /m2, for a fixed value ofm11m2), the real maxi-
mum of the overlap must lie somewhere along the ‘‘ridg
m15m2. Note, however, that there might as well be doma
of parameter space where the overlapO(m1 ,m2) reaches a
minimum along the ridge atm15m2 ~at fixed mass scale
m11m25const). The total mass is different from the tru
total mass at worst by about 1.5%. These percentages
course, do not give us a measure of the accuracy of est
tion of the parameters, rather they tell us the extent ofbias
induced in the estimation. Since our template bank conta
waveforms that are not exactly the same as the ‘‘true’’ s
nals, the parameters that maximize the overlap are diffe
from the real values, meaning there is a systematic erro
the estimation of parameters and the percentages we
quoted are upper limits on thesystematics.

The statisticalerrors in the estimation of the intrinsic pa
rametersm1 ,m2 are determined by the shape of the lev
contours of the overlap function between the templ
T(m1 ,m2) and the signal, which we assume here to be p
of the template bank:S5T(m1

0 ,m2
0). For a high signal-to-

noise ratio this shape is an ellipse~the error ellipse! which is
determined by the information matrix, i.e. the metric E
~6.7!. We have confirmed that even for the massive bin
systems that we consider, these error contours are qua
tively well described by the analytical results of@32#, i.e.
that, when represented in the (M,h) plane, whereM
5h3/5M is thechirp mass, they are highly elongated ellips
with a major axis roughly along theh direction and a minor
axis along theM direction. When represented in th
(m1 ,m2) plane these error contours have the shape of
crescents orthogonal to the diagonalm15m2. A bad conse-
quence of this fact is that there can be a large statistical e
in the determination ofh @32#, and therefore correspondingl
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large statistical errors in the determination of the individu
masses. Only the combinationM5h3/5M might be reason-
ably free of statistical errors. A more detailed analysis
needed to assess the total errors combining systematic
statistical effects.

We note in passing that a useful consequence of
highly elongated structure of the overlap contours is to all
a fast first-cut data analysis based on the lower-dimensio
template bank defined by fixingh, e.g. to 1/4, and varying
only M5m11m2. The choiceh51/4 would be sufficient to
cover systems in a large domain of mass space around
diagonalm15m2. It can then be complemented by consi
ering a few other simple values ofh. Each such lower-
dimensional~approximate! template bank~corresponding to
some value ofh) finally depends on only one universal fun

tion of one variable, the scaled phasing functionfh( t̂ ), ob-
tained by integrating, once and for all, the EOB equations
motion expressed in terms of scaled variablest̂5t/M , r
.ux12x2u/GM, for a particularh, extending to EOB the
idea ofmother templatesfor the post-Newtonian model@33#.
The bank of templates is then built from the shifted a
scaled functionfh@(t2t0)/M #. This fact should simplify
further the filter bank construction similar to the case
Newtonian signals which were expressible in terms of
universal functionfN( t̂ )}2(2 t̂ )5/8. Indeed, the fact tha
this must be so is implicit in the nature of the template ba
constructed by several authors~cf. second reference in@30#
and Ref.@34#! who find that a small range ofh is needed for
a large range of the total mass.

VII. CONCLUSIONS

In this study we have explored the robustness of 3
EOB templates. We introduced seven flexibility paramet
that affect the two-body dynamics and radiation emiss
and varied each of them separately over a range that ca
reasonably considered to be large enough to encompas
known and unmodelled PN effects. The parameters in
duced are as follows:~a! a 4PN parameterb5 that alters the
two-body effective metric and the EOB potentialA(u). We
conducted a special study of the structure of 4PN contri
tions to the Hamiltonian to estimate the plausible range
the parameterb5 measuring them (250<b5<250). ~b! The
unknown 3PN parameteru affecting the nature of the energ
flux emitted by the system (25<u<10). ~c! A parameterz2

that changesO(p2pr
2) terms in the two-body Hamiltonian

(22<z2<12). ~d! The location of the pole in the energ
flux controlled by a parametercP . ~e! Three parameters
f NonAdiab, f NonCirc, andf transitionthat are varied so as to inflic
at least a factor two change in the modelling of non-adiab
effects, non-circular effects and the transition from inspira
plunge, respectively.

We then compared the faithfulness and effectualness
standard fiducial EOB templates~that is, EOB templates in
which all the above parameters are set equal to zero! with the
flexed signals obtained by switching on the flexibility para
eters one at a time. Based on the study conducted in
work we find that the third post-Newtonian EOB templat
8-17
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DAMOUR et al. PHYSICAL REVIEW D 67, 064028 ~2003!
lead to effectualness larger than 96.3% in all cases~when
b5<250). For the (10M (,10M () systems, andb5 larger
than 190 the effectualness drops below the usual requirem
E.0.965, though it remains very close to it, being larg
than 0.96.~Even whenb5 gets very large the effectualnes
never drops below 0.95.!

There are two ways of improving this situation linked
the special sensitivity tob5. One way is to augument th
standard 3PN bank of templates@based onA3PN(u)] by
~when it is needed! a second bank of templates, based
A100(u)[A4PN(u;b55100). We have checked that th
‘‘doubled’’ bank of templates allows one to span all values
b5 with overlaps better than 0.985. A second way~which
minimizes the total number of templates needed! is to work
in all cases with only one specificb5-flexed bank of tem-
plates @namely the one based on the ‘‘intermediate’’ EO
potentialA50(u)[A4PN(u;b5550)]. The remarkable agree
ment between numerical and analytical descriptions of cir
lar orbits near the LSO@9,10#, suggests that it might be pos
sible soon to use numerical simulations to map in detail
EOB potentialA(u) near the LSO. Hopefully this might lea
to a numerical estimate of the value ofb5 thereby sharpening
the preferred choice of bank of templates.

There is a caveat in the current evaluation which we m
bear in mind, namely that we vary the flexibility paramete
only one at a time. It is possible that the actual physi
signal has more than one of the flexibility parameters n
zero. In that case our fiducial templates might not be abl
achieve the desired span. This is because the ‘‘shifts’’ in
fiducial template parameters needed to separately correc
v,

.

s.

.
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the various non-zero flexibility parameters might be in d
ferent ‘‘directions.’’ An attempt to define a rather phenom
enological signal was the main focus of Ref.@2#. In this
paper, we have focussed on a different~minimalistic! attitude
and have not looked into these matters. We intend to add
this issue in a future work.

To conclude: the 3PN EOB templates~possibly suitably
b5 flexed! are good models to use for black hole bina
searches in the interferometer gravitational-wave data
cause their ‘‘span’’ in signal space seems large enough
encompass most of the plausible modifications one can th
of making in the current EOB framework. Moreover, as w
emphasized, the highly elongated shape of overlap cont
in the (M ,h) plane suggests the interesting possibility
drastically reduce the number of EOB templates by usin
small number of universal phasing functionsfh i

( t̂ ) with a

small discrete set of values ofh prominently, includingh
51/4.
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