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Tilt Texture Domains on a Membrane and Chirality Induced Budding
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We study the equilibrium conformations of a lipid domain on a planar fluid membrane where the
domain is decorated by a vector field representing the tilt of the stiff fatty acid chains of the lipid
molecules, while the surrounding membrane is fluid and structureless. The inclusion of chirality in the
bulk of the domain induces a novel budding of the membrane, which preempts the budding induced by
a decrease in interfacial tension.
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The budding of membrane vesicles and subsequent
fission is the only means of traffic between compartmental
boundaries within a living cell [1]. Budding of vesicles
clearly requires membrane deformation —coat proteins
such as Clathrin and COPs I-II have been postulated
to play a crucial role in facilitating this deformation.
However, the precise role of these coat proteins in budding
events remains poorly understood [2].

Membrane deformation leading to budding may also be
triggered by changes in the structure and composition of
lipids. An oft-quoted mechanism, especially in the con-
text of artificial membranes, is the phase segregation in
multicomponent systems which leads to budding due to a
decrease in the interfacial energy [3,4] between the lipid
components. However, the resulting bud has a radius
Rbud . k�2l, where k is the bending modulus of the
membrane and l the interfacial tension, which for typi-
cal lipids is of order 5 mm, much too large compared to
the budding events in the cell. In this Letter we propose a
novel budding mechanism in a multicomponent lipid mem-
brane, where one of the species is chiral and acquires a tilt.
This chirality-induced budding can result in a bud size as
small as 500 Å.

Consider for simplicity a lipid bilayer membrane,
where the upper layer is built of two species, a majority
component (e.g., DPPE) and a minority component (e.g.,
sphingolipid), while the lower layer consists of a uniform
density of DPPE [5]. Let the minority species (sphin-
golipid) acquire a tilt with respect to the local normal of
the membrane. The tilt [6] could be intrinsic (when the
temperature T , Tm, the main transition temperature of
the chosen lipid) or acquired due to association with a
third component (e.g., cholesterol). We will work in the
temperature regime where there is at least a microphase
separation of the two lipid components over a length scale
R of the order of, say, 1000 Å. Note that most cellular
lipids are chiral and so, on acquiring a tilt, this molescular
chirality will express itself at length scales much larger
than molecular dimensions. The chiral strength may,
of course, be enhanced by forming complexes with
cholesterol [7].
0031-9007�02�88(8)�088101(4)$20.00
To start with, let us assume that the sphingolipid com-
plex is spread, with a fixed, uniform density, across a do-
main of area A, small enough so that over this scale the
membrane may be assumed flat. As a result, our descrip-
tion entails a decoration of a planar domain by a two-
dimensional (2D) unit vector field m, representing the
projection of the stiff lipid chains onto the plane of the
membrane, while the surrounding membrane is fluid and
structureless.

Our low energy Hamiltonian for the membrane tilt do-
main is given, to quadratic order in the fields by E �
EB 1 EL [8], where the bulk energy

EB �
Z

A

k1

2
�= ? m�2 1

k2

2
�= 3 m�2

1 kc�= ? m� �= 3 m� , (1)

and the interfacial energy,

EL �
I

dl�s0 1 s1�m ? n� 1 s2�m 3 n�� . (2)

The unit normal to the boundary n aims everywhere into
the domain. Note that = 3 m is a pseudoscalar in two
dimensions and kc�= ? m� �= 3 m� is the bulk chiral con-
tribution to the energy. The magnitude of kc is set by the
density of cholesterol present in the sphingolipid complex.
s0, the isotropic line tension, is of the order of 1028 dyne.
The Frank constants k1 and k2 are �10kBTroom, while the
interfacial energy of a domain of radius 0.05 mm is of the
same order [9]. This implies that thermal fluctuations can
be ignored at the temperatures of interest. We set k1 � 1
as our unit of energy and s0 � 1 as our unit of length
(equivalent to a length of order 0.1 mm).

The Hamiltonian (1), (2) has been studied in [8,10] in the
context of textures on Sm-C* films and Langmuir mono-
layers, respectively. Apart from the context, there are three
major points of departure—(i) our variational calculation
and Monte Carlo (MC) simulations for the T � 0 phase
diagram are “exact” giving results very different from [10],
(ii) we study the effect of strong anisotropic line tension
and bulk chirality on the shape and texture of the domain,
and (iii) we couple the tilt field to the local curvature of the
© 2002 The American Physical Society 088101-1
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membrane and study the effect of chirality on membrane
shape.

We rotate our coordinate axes and redefine the coeffi-
cient of anisotropic line tension to obtain the simpler ex-
pression [8,10] EL �

H
dl�s0 1 s�m ? n��. The T � 0

phase diagram is obtained by minimizing E variationally
subject to the constant area A constraint. Our variational
ansatz is restricted to a connected domain and so does not
allow for the breakup of domains into multiple domains.
In all cases, we have corroborated the results of our varia-
tional calculation by an MC simulation using simulated
annealing to avoid getting stuck in local minima. In this
sense our variational calculation is exact.

We first study the phase diagram of a domain with cir-
cular boundaries. To begin with, let us turn off bulk chiral-
ity �kc � 0� and set k2 � k1. The T � 0 phase diagram
in the R-s plane (where R �

p
A�p) has the following

four phases separated by first-order boundaries (Fig. 1):
(1) Boojum phase where the center of the circular domain
is a distance a away from the core of a virtual defect of
strength N . Placing the origin of polar coordinates �r, u�
at the core of the boojum, we can describe the texture
m � �cosf, sinf� by the equation

f � Nu 1 c1r sinu 1 c2r2 sin2u 1 c3r3 sin3u 1 . . . .
(3)

The energy E is minimized with respect to the variational
parameters �N , a, �cn	� for fixed �R, s�. We find that the
optimal value of N is exactly 2, independent of a. In draw-
ing the phase diagram we parametrize the texture by N and
c1 alone; inclusion of c2 and terms of higher order lowers
the energy by 1% at most. Fixing the area at, say, R � 1,
an increase in s leads to an increase in c1 and pushes
the core of the virtual defect towards the domain center,
till at a � 1.7 we enter the annular phase. (2) Achiral
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FIG. 1. Phases of the tilt texture domain with circular periph-
ery: (1) Boojum, (2) achiral annular, (3) chiral annular, and
(4) hedgehog with ec � 0. Arrows indicate direction of m field.
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annular phase with inner and outer radii r1 and r2, re-
spectively. At the outer rim of the annulus m is directed
radially outward, while at the inner boundary m is in-
clined at an angle a to the local normal n. With the origin
of polar coordinates at the center of the annulus, the tex-
ture may be described by f � u 2 a�r2 2 r���r2 2 r1�,
where r1, a are variational parameters. The inner radius
r1 monotonically decreases as we increase s such that m
always points radially outward �a � 0� at every point of
the domain. As one crosses the first-order phase bound-
ary (Fig. 1) we encounter a new annular phase with a chi-
ral texture. (3) Chiral annular phase where a jumps to
an angle greater than p�2 at both boundaries. Conse-
quently, the bulk texture is chiral with the order parame-
ter C �

R
d2x�= ? m� �= 3 m� fi 0 even though there

is no bulk chiral interaction. This chiral phase is dou-
bly degenerate and can spontaneously acquire either sign.
(4) Hedgehog phase with a defect at the domain center and
a texture described by f � u. The energy includes a core
contribution ec of the defect of size rc.

The transitions 1 ! 2 and 2 ! 3 are discontinuous (in-
dicated by the change in slope of the energy branches as a
function of s) and weaken as the domain size R shrinks.

As s0 is reduced, the boundary of the domain is no
longer constrained to be circular. We may then parame-
trize the boundary by smooth deformations of a circle,
r�u�, where the origin is at the center of the circle of ra-
dius r0 and 0 , u , 2p is the angle to the polar axis,
r�u� � r0�1 1

P`
n�1 an cos�nu��. The amplitudes �an	

are additional parameters in our variational calculation.
We find that the texture throughout the R-s plane is a
boojum with the domain bulging out near the equator and
flattening near the poles as s increases from zero. These
shapes and textures win over the annular and hedgehog
phases.

We now turn to a description of phases with nonzero
bulk chirality kc, which without loss of generality we take
to be positive. In the phase diagram, Fig. 2, we have
set s � 0: (1) Uniform phase, when jkcj , 1, where the
domain is circular and the tilt field m is uniform. (2) Spiral
hedgehog phase where the domain is circular with a texture
such that m at every point is inclined at an angle a to the
ray emanating from the center of the domain. The radial
and the tangential components of m in this spiral phase are
mr � cosa, mu � sina, while the energy is given by

E � 2p�rc 1 R� 2

µ
kc

2
sin2a 2

1
2

∂
log

R
rc

1 ec .

(4)

The optimum value of a is p�4 when jkcj . 1. This phase
clearly gives a nonzero value for the chiral order parame-
ter C. (3) Tweed phase domain is again circular though the
texture loses the circular symmetry of the previous phase.
Our ansatz for the texture is motivated by the results of
an MC simulation of 3055 particles carrying O(2) spins
on a triangular lattice with a Hamiltonian obtained by dis-
cretizing E, for s � 0, kc � 12.75. We have performed a
088101-2
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FIG. 2. Phases of the tilt texture domain with bulk chirality
and s � 0: (1) Uniform, (2) spiral hedgehog �ec � 0�, and
(3) tweed. Top inset shows variation of the energy branches
as a function of kc at R � 1 indicating discontinuous transi-
tions. Notice that the energy decreases rapidly in phase (3) as kc
increases. Lower inset shows the texture within a unit cell; this
pattern repeats periodically to form the tweed phase (3).

simulated annealing from �kBT�21 � 0.1 ! 300 starting
from a variety of initial conditions [11] to obtain textures
as in Fig. 2 (lower inset). A variational ansatz may easily
be written down for such a texture: place the origin of co-
ordinates on the boundary of the domain and parametrize
the texture by a length, l, such that mx � jcosx�lj and
my � 2jsinx�lj. This texture confers a net chiral strength
to the domain —�= ? m� �= 3 m� has the same sign ev-
erywhere, though the sign of individual terms, = ? m and
= 3 m, varies from one stripe to the next. The energy of
the tweed domain is

E � 2pR 2
kc

2l2

Z 2R

0
dx

p
2xR 2 x2

Ç
sin

2x

l

Ç
1

1
2l2 .

(5)

The variational parameter l approaches zero to minimize
the energy, corresponding to infinitely many tweeds.
Higher order derivative terms in the Hamiltonian would,
however, cut off this monotonic decrease at some scale
l� [11].

On turning on the anisotropic line tension s, the bound-
ary of the domain deviates from a circle giving rise to a
variety of new phases. We will make a detailed study of
the phase diagram in a later paper. Let us move on, for the
moment, and allow the membrane containing the domain
to be flexible, thus promoting a coupling between the tilt
field m and the curvature tensor Kij [12]. At the same time
we have to treat the membrane as a bilayer: we thus define
the curvature, tilt, and lipid density fields on both the upper
and lower leaves of the bilayer and project these variables
onto the neutral surface of the membrane [13]. In covari-
088101-3
ant form, the bulk energy to lowest order in derivatives is
given by [14]

EB �
Z

A

∑
k1

2
�divm�2 1

k2

2
�curlm�2

1 kc�divm� �curlm� 1 c0Ki
i 1

k

2
�Ki

i �2

1 bmimjKi
j 1 c�

0gijm
kmiK

j
k

∏
, (6)

where the divergence and curl are written in terms of the
covariant derivative Di as, divm � Dimi and curlm �
g

j
i Djmi . The terms proportional to c0 and k are the usual

Helfrich contributions to the membrane energy [15]. The
appearance of gij, the completely antisymmetric tensor on
a 2D curved manifold [12], indicates that the coupling
of the texture to the membrane curvature also depends
on the chiral strength of the sphingolipid complex [7] in
the domain. The magnitude of this term is proportional
to the curvature of the membrane if the texture on the
membrane has a handedness; this favors a helical texture
on a cylindrical membrane, the lines of �m being inclined
at an angle of 45± to the axis of the cylinder. To highlight
the effect of chirality, we set c0 � b � 0 and include only
the isotropic line tension in the interfacial energy EL [16].

We will see that the effect of increasing c�
0 for fixed size

R is to induce the domain to leave the plane and form a
spherical bud of radius R�2 connected to the plane by an
infinitesimal neck. More significantly, at fixed but large
enough c�

0 this chirality induced budding occurs at a much
smaller size R than the phase separation induced budding
caused by a decrease in the interfacial tension between
the two lipid components [3]. Note that we have ignored
higher order derivative terms in (6) which couple gradients
of �m to the curvature; we have seen that its effect is small,
merely renormalizing the spontaneous curvature.

For instance if we fix kc at phase (2) of Fig. 2, we
find that the membrane remains planar and the texture a
spiral hedgehog for small c�

0 (Fig. 3). A further increase
in c�

0 leads to a discontinuous budding transition where
the texture decorates a spherical bud with a vanishingly
thin neck. Both the chiral terms, proportional to kc and
c�

0, gain in energy by this budding, even at the cost of
producing a defect at the pole. This may be seen by setting
the latitudinal and longitudinal components of m as mu �
1�
p

2 and mf � 1�
p

2, a choice which smoothly goes
over to the spiral hedgehog phase in the limit of the planar
membrane. The membrane shape is parametrized as a
sphere of radius r attached to the plane by a neck of radius
r0. The energy of this conformation is EL � 2pr0 and

EB � pk
R2

2r2 2 pc�
0

R2

r

2 p�kc 2 1�
Z p2u0

uc

du
cos2u

sinu
, (7)

in addition to a defect core energy ec, where uc � rc�r
and r0 � r sinu0. As before, we have fixed our unit of
energy by setting k1 � k2 � 1. We have ignored the small
088101-3
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FIG. 3. Phases of the tilt domain coupled to membrane shape
with kc � 1.5, s � 0, and k � 10: (1) Planar, (2) spherical
bud, and (3) cylindrical tubule. With these parameters, domain
induced budding due to a gain in line tension [3] occurs at
Rc � 10. Inset shows the variation of the ratio a � L�r with
c�

0 for a domain of size R � 1.

curvature energy cost at the junction where the spherical
bud meets the plane. Variation suggests that the energy is
minimized when r0 ! 0 and r � R�2 (Fig. 3).

At larger values of c�
0 , the spherical bud gives way dis-

continuously to a cylindrical tubule (Fig. 3). We see that
the energy is minimized when the domain wraps around a
cylinder of radius r and length L attached to the plane at
one end and capped by a hemisphere with a polar defect
core at the other (Fig. 3). The m field on the spherical cap
is as described earlier; the axial and tangential components
of m on the cylinder are mz � 1�

p
2 and mf � 1�

p
2.

This choice corresponds to a texture where the lines of
m wrap around the cylinder as a helix of pitch propor-
tional to r [17]. Note that m varies smoothly across the
junction of the cylinder and the hemisphere, and extrapo-
lates smoothly to the spiral hedgehog texture in the limit
of the planar membrane. The energy of this conformation
is EL � 2pr and

EB � 2p

µ
k

2
2 c�

0r

∂
1 p

µ
k

4
2 c�

0r

∂ µ
R2

2r2
2 1

∂

2 p�kc 2 1�
Z p2u0

uc

du
cos2u

sinu
, (8)

in addition to a core energy ec (we have again ignored
the curvature contribution coming from the neck). The
optimal L�r obtained variationally increases rapidly with
c�

0 [Fig. 3 (inset)].
As seen from the inset of Fig. 2, the energy plummets as

kc increases. This implies that if kc was chosen such that
088101-4
phase (3) of Fig. 2 were the equilibrium texture at c�
0 � 0,

then the domain would gain significantly in bulk energy by
budding, first into a spherical bud and then into a tubule.
The range of c�

0 for which the spherical bud obtains would,
however, be reduced.

The variational calculation for the energy-minimizing
shapes of a flexible, fluid membrane having a tilt domain
is, of course, not exact. A more general variational calcula-
tion will at most shift the phase boundaries slightly; in any
case, the chirality-induced budding at small R is robust and
should be testable in experiments on artificial membranes
consisting of carefully chosen lipid components. We be-
lieve that this is relevant to the budding of cell membranes
which are not assisted by coat proteins, as in the endocy-
tosis of raft components [18].
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