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Appearance of the central singularity in spherical collapse
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We analyze here the structure of nonradial nonspacelike geodesics terminating in the past at a naked
singularity formed as the end state of inhomogeneous dust collapse. The spectrum of outgoing nonspacelike
geodesics is examined analytically. The local and global visibility of the singularity is also examined by
integrating numerically the null geodesics equations. The possible implications of the existence of such fami-
lies for the appearance of a star in the late stages of gravitational collapse are considered. It is seen that the
outgoing nonradial geodesics give an appearance to the naked central singularity like that of an expanding ball
whose radius reaches a maximum before the star goes within its apparent horizon. The radiate@kemgrgy
the null geodesigs however, is shown to decay very sharply in the neighborhood of the singularity. Thus the
total energy escaping via nonradial null geodesics from the naked central singularity vanishes in the scenario
considered here.
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[. INTRODUCTION energy could escape. Even if a fraction of the energy so
generated is able to escape to a distant observer, an observa-
The continual gravitational collapse of a massive mattetional signature could be generated. It therefore becomes
cloud results in either a black hole or a naked singularityquite important and interesting to look into this possibility in
depending on the nature of the regular initial data fromsome detail, and to consider possible observable differences
which the collapse develops. An important development isn the two scenarios from the perspective of a faraway ob-
the emerging realization that at least in the spherically symserver.
metric case both these final states seem to occur generically We therefore make such an attempt here to study the ap-
[1]. pearance of the late stages of collapse. While our emphasis
The theoretical properties and possible observational sign the present study will be on examining the null spectrum,
natures of a black hole and a naked singularity would bewhich is important, we also need to keep in mind the possi-
quite significantly different from each other. An immediate bility that emissions could as well come through other non-
distinction is, that if the collapse ends in a black hole, anspacelike geodesics or nongeodetic paths, which represent
event horizon develops well before the occurrence of thénigh energy particles.
singularity, and thus the regions of extreme physical condi- If the collapse ends in a black hole, the neighboring re-
tions (e.g., blowing up densities and curvatyrese hidden gions of singularity will appear dark, hidden within the event
from the outside world. On the other hand, if the collapsehorizon. However, the naked singularity scenario could be
develops into a globally naked singularity, then the energy otlifferent in principle. Hence we analyze the possible appear-
the regions neighboring the singularity can escape via thance of these high curvature regions when the singularity is
available nonspacelike geodesic paths or via other nongedaked. In this connection, one of the most extensively stud-
detic, nonspacelike trajectories to a distant observer. ied models has been that describing the collapse of inhomo-
In such a case, as postulated by some autfftirsa huge  geneous dust, where various features arising as collapse end
amount of energy could possibly be released, in principlestates are well understood. It is known in this case that both
during the final stages of collapse from the regions close tdlack holes andlocally and globally naked singularities,
the singularity. As suggested [i2] an enormous amount of with either an asymptotically flat or a cosmological back-
energy might be generated either by some kind of quanturground, can develop depending on the nature of the initial
gravity mechanism, or by means of an astrophysical processata, which is specified in terms of the density and velocity
wherein the region simply turns into a fireball creating profiles for the collapsing shells at the onset of the collapse
shocks in the surrounding medium. One way to study thg3-5|. Hence, these provide an ideal situation to study a
structure of these extreme regions is to examine the completgroblem such as the above and to study the scenario devel-
spectrum of all nonspacelike geodesics through which thigping in the later stages of collapse.
It has been shown that in the case of collapse ending in a
naked singularity, outgoing future directed radial null geode-
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nonradial trajectories. The behavior and contribution of non- 2R32
radial null geodesic§NRNGS9 could be significant for the t—to(r)=— , (4)
appearance of the singularity. Although the study of outgoing VF

nonradial null geodesics terminating at a naked singularity is
of theoretical interest in its own right, it becomes particularlywherety(r) is a constant of integration. Using the coordinate
essential in the context of the appearance of naked singuléteedom for rescaling the radial coordinateve set
regions when one realizes that past calculations of the ap-
pearance of a collapsing s:téironsingular r_egipr)sdepended R(O)=r, (5)
on the behavior of nonradial null geodesics in the late stages
of collaps€6]. In fact, in the late stages of collapse the main
contribution comes from nonradial null geodesics, which
form a ring atR=3M. This ring then decays exponentially,
giving a distinct rapid decline of luminosity within a short 2r372
time interval. It is also of interest to check if timelike non- to(r)= ﬁ (6)
radial geodesic§NRGS9 also come out of the singularity.

We thus need to understand and analyze the behavior of
nonradial geodesics in the vicinity of a naked singularityAt the timet=ty(r), the shell labeled by the coordinate ra-
toward this end, which has not been done so far. Such afliusr becomes singular where the area radfsr the shell
analysis not only is of theoretical interest in its own right, butbecomes zero. We consider only situations where there are
will also C|a|’ify several issues such as those above’ thus rél0 shell CrOSSingS in the Spacetime. A sufficient condition for
vealing the structure of the naked singularity better. In thethis is that the density be a decreasing functiom,ofvhich
following, Sec. Il describes basic equations governing thénay be considered actually to be a physically reasonable
Tolman-Bondi-Lamaie (TBL) models, and in Sec. Il we requirement, because for any realistic density profile the den-
consider nonradial geodesics emerging from the naked sirfity should be higher at the center, decreasing away from the
gularity forming in such a collapse. Section IV discusses th&enter. The ranges of coordinates are given by
luminosity aspect and in Sec. V some conclusions are pro-
posed. O<r,<oo, —oo<t<ty(r), (7)

which gives

Il. THE TBL MODEL AND GRAVITATIONAL COLLAPSE wherer =r, denotes the boundary of the cloud. The quantity

R’, which is also needed later in the equation of the geode-
sics to check the visibility or otherwise of the central singu-

larity, can be written as

A collapsing dust cloud is described by the TBL metric
[7], which is given in comoving coordinates as

R/Z
ds’=—dt?+ mc||r2+R2(o|a2+sin2 6de?). (1) F'R

F
1- ?) Jr/R. (8)

The energy-momentum tensor is that of dust:
Ill. NONRADIAL GEODESICS IN TBL MODELS

!

Ti=es5!, e=e(tr)= ; ) The regular center in a spherically symmetric spacetime
can be the source of only radial geodesics. So when the
central singularity is covered the center is observed by a
distant observer by intercepting radial null geodesics till the
time the event horizon forms, beyond which nothing is seen.
F(r) An outside obser\{er would see radial photons from the cen-
R2=f(r)+ ——. (3)  ter, which would disappear much before the formation of the
R singularity. These photons do not stay in the cloud longer. At
this point it is important to note that, as in earlier discussions
Here the overdot and prime denote partial derivatives withpbf a collapsing star entering the event horizon, the role of
respect to the coordinatésandr, respectively, and for the nonradial geodesics cannot be overemphasized. The nonra-
case of collapse we haue<0. The functionsk andf are  dial null geodesics emitted in late stages of collapse tend to
called the mass and energy functions, respectively, and thegvolve around the star and thus take a longer time to reach
are related to the initial mass profile and velocity distributionthe distant observer. Therefore, even after the star has gone
of shells in the cloud. through its Schwarzschild radius, it leaves a ring of photons
At this point we limit ourselves to the marginally bound at R=3M. So a distant observer observing late stages of
case because of the simplicity and clarity of the analysis. Theollapse sees a bright ring B=3M which decays exponen-
results in the general case would be the same, however. Fottially. In the context of the formation of a naked singularity,
marginally bound cloud f(=0), the integration of Eq(3)  therefore, it is essential that we examine this issue carefully
gives and investigate the nonradial spectrum of null geodesics.

R?R’

where € is the energy density, and the area radiks
=R(t,r) is given by
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A. Basic geodesic equations

The tangents to the outgoing geodesics are given by

- dt_P Kr_dr_\/Pz—I2+BRz 9
"R KT R 0 @
do |
L
d)\ R21 (10)

where\ is the affine parameter ariél satisfies the differen-
tial equation

P
—P?=I?+BR 5 +BR=0.

(11)

We can work in the equatorial plang= /2, with K’

=(d#/d\)=0, and due to spherical symmetry this can then

dR
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——=H(X,u) =U(X,u)
du

A 1
1_ J—
X \1-12/P?+BXuWP?
(15

where we have puR’ =H(X,u)r* * and A =F/u. H(X,u)

is positive and nonzero for atl>0. In order to understand
the nature of the singularity in the context of nonradial geo-
desics, one has to study the detailed behavior of the charac-
teristic curves of the above first order equation in the vicinity
of the singularity. If these curves terminate in the past at a
singularity with a definite tangent then this is determined by
the limiting value of X=R/r*=R/u at the singularityR
=0,u=0. If the future directed nonspacelike geodesics meet
the singularity in the past with a definite value of tangent,
then using Eq(12) and I'Hopital’'s rule along the geodesics
we can write

li R_U X0,0
m m= ( 0 )

R—O0u—0

) R
lim —=
R—O0u—0

lim X=
R—0u—0

Xo=

be rotated to recover the same qualitative features for the ful},

spectrum of null geodesics. In the above equatBr0 for
null geodesicsB= —1 for timelike geodesics, an8=1 for
spacelike geodesics.

Using Eq.(3), these equations can be written in theR)

plane as
F 1
1-—\/=f
R 1-12/P2+BR/P2

where« is a constant fixed by demanding tHat/r* ! re-
mains finite. For the quantitiep andP we have

dR R’

ar¢ a,ra—l

» (12

do | R’
————————— (13
dr P R/P?-|?+BR?
and

dP PR’ 1 [F[3R" F’

4P PR gt SR

ar~ R VPTIHBR VR R TE

+ BRR \f (14)

P2-1?+BR? VR

respectively.

The above equations are a set of three coupled first order

U(X,00—X=V(X)=0, (16)
where U(X,u)=dR/du (along the geodesigsas defined
above.

If the above equation has a real positive rfet X, then
the singularity is at least locally nakd@]. In such a case
there is at least one geodesic that comes out of the singularity
with R=Xgr®. To check whether a family of nonspacelike
geodesics comes out along the given direction, one needs to
examine the higher order terms to get a constant of integra-
tion. It turns out that for radial geodesics we have two solu-
tions, and along the larger solutigroot) direction, which is
the Cauchy horizof(the first ray coming out of the singular-
ity), only one RNG comes out, while along the other direc-
tion a family of infinitely many RNGs comes out of the
singularity. In thea<3 case, to lowest order this family has
the same behavior as that of the apparent horizon near the
singularity.

We want to solve these equations in a self-consistent man-
ner near the center, requiring that the outcoming null geode-
sics have a well-defined tangent at the singularity in a suit-
able plane. For simplicity and clarity, we assume the mass
function to have the form

F=Fqr3+F,r3 "+ higher order terms,

ordinary differential equations. For a given value of the pa-

rameterl one has to specify three initial conditiofstarting

values ofr, R, and ¢) and solve them simultaneously to get

the geodesic trajectories.
It follows from the above equations that foxt,(0) and
r=0 the tangent equations gide=0 for self-consistency.

Thus no NRGs will be radiated by the center before the

singularity is formed at the center e+ 0.

and we first consider only the null geodesi&=0). Later
we generalize the results to other geodesics.

For clarity we divide our further analysis into three main
cases.

1. n<3, i.e., a<3

In this case, assuming thEtP <1 and checking for self-

We now turn our attention to nonradial geodesics in TBLconsistency, there are two kinds of behaviors possibldfor

models near the central singularity. Defining=r¢, X
=R/u, Eqg.(12) can be written as

as given by(a) R~X,r'"2"3 [where Xo=(—F,/2F,)%°]
(this is the direction of the Cauchy horizoror (b) R
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~Xor3~Fqr® [4,8]. In case(a), from Eq.(14) (assuming that singularity, which is always within a black hole. The

P remains nonzepjowe get Oppenheimer-Snyder collapse is a special case of this class
with n=o0,
P~ Pora: Por1+2n/3, (17)
wherePy is a constant of integration. So we get a contradic- B. Non-null geodesics

tion, because % 12/P?— — . It follows that we cannot have
NRNGs coming out of the singularity along this direction.

In case(b) (R=Xqr3~Frd) [4,8] assuming *1%/P?
>0 we get, from Eq(14),

Now we will check what happens for timelikd8& — 1)
and spacelike B=1) NRGs. Even in these cases, in Egs.
(12)—(14), for all the singular geodesidR? goes to zero as
we approach the center€£0) and it is always negligible
compared to the other terms. So provid@temains nonzero
near the center, the root equati@tf) remains the same as
Thus in the limit of the singularit blows up exponentially that for null geodesms. No_vv if we also solve the equation for

Pyl X P [Eg. (14)] in a self-consistent manner we see that for the
so we get +-19/P“—1 and we have a self-consistent solu-

. ; . maller rootP (and so als') blows up and we get a self-
tion for the nonradial geodesics. One can also check thal : ) . . .

. . consistent solution for the geodesic equations near the singu-
there are no self-consistent solutions for NRNGs along an

other directions. Yanty; th behavior of these geodesms_ near.th.e singularity is
very similar to that of the null geodesics. Similarly, we can
easily check that no nonradial geodesics can come out along

the larger root direction.
We can uniquely fixa=3 and assuming that along the

geodesicR=X,r3, we get from Eq(14) C. Global behavior

P=Pye  [NFBE-MFr" 2, (18)

2.n=3,i.e.,a=3

P~Por*3(2b3*2b0*1)’2b0(b0*1), (19 We now consider the global behavior of nonradial null
geodesics coming out of the singularity in various cases, and
check whether there are any NRNGs that can be actually
seen by a faraway observer. Basically, we try to check for
singular NRNGs(outgoing nonradial geodesics that termi-

whereby=X,/F. For P to blow up we need (83— 2b,
—1)>0. This gives

143 nate in the past at the singulajityand examine with what
bo=\Xo/Fo<boerit= —=—. (20) maximum value of (1=1,,,,) they can meet the boundgry of
2 the cloudr=r., when the boundary has area radiRs

_ ) =R, . Here we fix the boundary in such a way that the den-
Assuming thaP blows up, the root equatiofi6) reduces to sty goes to zero smoothly at the boundary. The outside so-

the same equation as for the radial null geodesics case. Ifytjon is Schwarzschild, with total mass=F(r.)/2. So with
troducing X=Fx? and £=F3/F3? the root equation then oyr condition we fix
becomes

3+nF,| "

2x4+ x3— éx+£=0. (2D re= 3 F,

From the theory of quartic equations, this admits a real posil- F'/gpure(jvhlear)e ";)sza;t SRthF\g tgidg\:\z/i;hsiv :Ft?ﬁisvzr:l:rs]e
tive root for ¢<é=—(26+15//3)/2. Basically, if this m2x * ¢ c c 9

condition is satisfied then we have two real positive rootsinitial condition. We see thata,/P, increases as we de-
) P creaseR;. This is expected in a way as the geodesics with
The smallest value for the larger rowf is the same as the

| t val f th I o, and it is th larger value of ,,,«/P. revolve more around the center, i.e.,
argest value of the smalfler oo, and It IS tne same as they remain in the inner region for longer times, so they are
Docrit ; this is achieved af= &, . So the condition20) is

tisfied al the | t(Cauchy hori q more likely to get trapped before reaching the larger values
.”e"ler salis ";". f?‘ gngl € t?]rger rorlg ( autcSy Porlzoo)] lan of R. Figures 1b) and 2Zb) show ¢ versusr while Figs. Xc)
IS always salisfied along the smaller rogt S0 —=u along - 5y 4c) showR versusr for some singular and nonsingular
the larger root, and we cannot get self-consistent real sol

. . . jeodesics.
tions for the set of equations for the null geodesics. Tha

th NRNG . tal the C The considerations above point to NRNGs terminating in
means we cannot have S coming out along the aUCh[¥1e past at a naked singularity that could reach a distant
horizon direction. Along the smaller root direction this con- external observer. Unlike the regular center of the cloud
dition is always satisfied? blows up, and we have a self- i '

. . o . . which cannot have nonradial geodesics terminating there, we
consistent solution for the geodesic differential equation

That h NRNG . t of the si have a distinctly new scenario where an observer could in-
al means we can have S coming out ot the Slngu'Eercept NRNGs from the naked central singularity. Because
larity only along the direction of the smaller root.

of the high curvature in the singular regions, nonradial pho-
tons revolve around the center and stay for a longer time in
the cloud before reaching the surface and hence the distant
In this case we have to fik=1+2n/3>3, soF/R—»,  observer. Therefore, unlike the black hole case, where the
and we cannot have any null geodesics coming out of theenter of the cloud disappears rather quietly, in the case of a

3.n>3,i.e.,,a>3
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FIG. 1. Various plots folF =r3—4r>, (a) Plot showing the maximum value of,,,/P, for various values oR.. (b) Plot showing the
geodesics with =1,,,, in the (r,®) plane for two different values dR.. (c) Same geodesic in the [R) plane.

naked singularity the center will appear as nothing unusualvhen there are families of singular RNGs coming)otib a
up to the time a singularity is formed. However, once thedistant observer, the photons will appear to be coming not
singularity is formed, it will appear rather differently. just from the center but from a spherical regiovith r=0 as

Let us consider this phenomenon in some detail. For ahe center having a radius corresponding tQ.,. In this
distant observer, until the receipt of the first singular RNGsense, therefore, the center will appear as a spherical ball
from the naked singularity, the center will be observedwith an expanding radius. The expansion continues until a
through the RNG and will appear as a regular center insidenaximum value ofl is reached. Apart from the visible ap-
the cloud. After the formation of the naked singularity, how- pearance of the naked singularity in the electromagnetic
ever, the observer will also start intercepting NRNGs whichspectrum, the observations in terms of high energy patrticles
arrive later than their RNG counterparts. The observed posiraveling along nonspacelike curves will also be the same.
tion through the NRNGs depends on the value of the impacThat is, unlike the black hole scenario, in the case of a naked
parametet. The higher the value of the impact parameter thesingularity forming, the timelike particles will also appear to
more time is spent by these photons in revolving inside théve coming from an expanding ball.
cloud and therefore they take longer time to come out. The
maximum value of the impact parameterf,(to) is a func-
tion of time. Therefore, at any instant of time, after receiving
the first RNG from the naked singularity, the observer will  Normally most of the luminosityenergy of an object
receive NRNGs within the randg,,,(t)=1=0 (for the cases comes from the nonradial rays. We have shown above that an

IV. LUMINOSITY FUNCTION FOR THE SINGULARITY
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FIG. 2. Various plots foF =r3—30r®. (a) Plot showing the maximum value b&f,.,/ P for various values oR;. (b) Plot showing the
geodesics with =1,,,, in the (r,#) plane for two different values dR.. (c) Same geodesic in the [R) plane.

infinite number of nonradial geodesics come out of the nakegower radiated is not the same as the power hitting the area
singularity, along the non-Cauchy horizon direction. Onlyat the observer. In the case of RNGgxR3 whereR, is the
one RNG comes out of the singularity along the Cauchyarea radius of the observer.
horizon direction(the larger root[8]. So, if any radiation Letu? s andu?, be the four-velocities of the source and
comes out of the singularity, it will normally be expected to the observer and Iéf; andE, be two events connecting the
come out along the smaller root direction through rays withsource and the observer through the RNG. The redshift factor
various values of the impact parameteFrom such a per- s given by
spective, we need to consider the luminosity function for
these rays for various observers.

Let us consider an observer at comoving coordimate
=Tr,. The observed intensity, of a point source is

[Kau%s)g,

1+z= 2 ,
[Kal%q)]e,

(23)
P

b=y (22 |

Ay(l+2) where the numerator and denominator are evaluated at events

) ) ) - E; andE,, at the source and observer, respectively, with
where Py is the power radiated by the source into the solid

angle 8Q1, and A, is the area sustained by the rays at the . A
observer. The redshift factor (1z)?> appears because the We=58r, Ul g=2;. (24)
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Taking the source as the naked centerat) and the ob- essential difference as far as the physical consequences of

server atr =r, we have naked singularity formation are concerned.
In the black hole case, resulting from the collapse of a
(KYH4 finite sized object such as a massive star, such strong gravity
1+z= (Khy® (29 regions, or what we may call “fireballs,” will be necessarily

covered by an event horizon of gravity, well before the cur-

In the evaluation of the redshift, the behavior of the tan-vature conditions becomes extrexeeg., well before the col-
gent vector componerk! is important. It is finite at the lapsing cloud goes to the Planck siz such a situation, the
nonsingular observer who is sufficiently far away from thequantum effects, even if they were causing qualitative
center, i.e.r ,>0. Therefore, the behavior f' at the naked ~changes closer to the singularity, will be of no physical con-
singularity determines the behavior of the redshift factor. AsSequences, because no causal communications are allowed
discussed earlier, along the trajectories of intet€5tdi- from such regions. On the other hand, if the causal structure
verges very rapidlyexponentially ifa<3, and by a large Were that of a naked siljgularity, communications from such
power law if «=3). This means that the redshift diverges @ quantum gravity dominated extreme curvature ball would
very rapidly for the singular rays of our interest and for anybe Visible in principle, either directly, or via secondary ef-
nonsingular observer it will be infinitéln a way the expo- fects such as shocks produced in the surrounding medium.
nential divergence of the redshift far<3 is expected as Then we may have a chance to observe directly the quantum
these rays stay very close to the apparent horizon near tHgavity effects from such fireballs generated due to stellar
singularity and in such a situation the redshift in thecollapse.

Schwarzschild case also diverges exponentjaiy. the red-
shift diverge_s, andS_\o is finite, classicql!y the Iuminosi_ty of V. CONCLUSIONS
the naked singularity along such families should vanish.

It is very difficult to get rid of this dominance of rapidly By studying NRNGs we have demonstrated that, when-
diverging K' near the singularity on the redshift and so ever the singularity is naked, along with RNGs, NRNGs also
also the dominance of this diverging redshift on the luminos-come out of the singularity. One can also say that if NRNGs
ity. That means the luminosity of the naked singularity alongcame out of the singularity then RNGs will also come out,
such NRNGs for an observer will be zero, i.e., no energy willbecause we have shown that eventually the root equation for
reach the observer along such families from the naked sirthe existence of geodesics does not depend on the value of
gularity, at least classically. Therefore, in the case above, ththe impact parametdr This is similar to the recent paper
naked singularity may not be physically visible to faraway[10] on null geodesics, which appeared while this was being
observers directly by means of emitted light. However, forwritten. We have also shown that similar results exist for the
the @< 3 naked singularity cases, if an enormous amount ofimelike and spacelike geodesics also. Basically we see that
radiation is emitted just along the Cauchy horizon, it may ben comoving coordinates all the geodesics have very similar
possible that a measurable fraction of the emitted energy wilbehavior near the central singularity.
reach an observer. This may happen as along this wave front The existence of nonradial geodesics coming out can in a
K' and so also the redshift remain fin{i@]. But this obser- way make the naked singularity look as if it has a finite area
vation of luminosity will only be instantaneous as only ato an outside observer. This possibly happens because, even
single light ray is allowed to escape. though the singularity is at the center of symmetry and geo-

All the same, the possibility of mass emission via timelike desics can come out of it, gravity is very powerful and domi-
or nonspacelike nongeodetic families of paths coming out ofiant for such trajectories.
the naked singularity remains open. In the case of such a When the singularity is naked, RNGs come out of the
violent event being visible, particles escaping with ultrarela-singularity with two possible tangentgoots. Along the
tivistic velocities cannot be ruled out from this neighbor- larger tangentCauchy horizopdirection only one RNG can
hood. It is also to be noted that the classical possibilities suchome out, and along the smaller tangent direction an infinite
as that above regarding the probable light or particle emistamily of RNGs come out of the singularity. We have shown
sion, or otherwise, from a naked singularity may not perhapsiere that NRNGs come out only along the direction of the
offer a serious physical alternative one way or the other. Themaller root, i.e., no NRNG comes out along the Cauchy
reason is that in all physical situations classical general relahorizon direction which corresponds to the larger root. To-
tivity will break down once the densities and curvatures aregether with earlier results8], this means that only a single
sufficiently high so that quantum or quantum gravity effectsradial null geodesic comes out of the naked singularity along
become important in the process of an endless collapse. Suthe Cauchy horizon direction. In the marginally bound case
quantum effects would come into play much before the ac{f=0), if the mass function has the fornfF=Fgr3
tual formation of the classical naked singularity, which may+ F,r2*"+ higher order terms, then whem<3 the Cauchy
possibly be smeared out by quantum gravity. The key poinhorizon has the behavioRer® (where a=1+2n/3<3),
then is the possible visibility, or otherwise, of these ex-while along the other directiofsmaller roof the geodesics
tremely strong gravity regions, which develop in any case, irhave a behavior similar to that of the apparent horizon, i.e.,
the vicinity of the classical naked singularity. It is then theR=F,r3. In the n=3 case,a«=3, and along both the tan-
causal structure, that is, the communicability or otherwise, ofjentsRe<r3, but the values of the proportionality constants
these extremely strong gravity regions that will make theare different.
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By studying the global behavior of geodesic families us-the larger root direction. Thus, for regions of spacetime
ing numerical methods, we have shown that, even when anwhere the curvature diverges fast enough, the redshift is in-
value ofl is allowed near the singularity, only the geodesicsfinite, thus censoring energy. In a sense this result can be
with a certain maximum value df,,,/P. can reach any considered to be supporting the cosmic censorship hypoth-
given outside observer. This value depends on the position @fsjs, if we mean by the latter a statement such as that general
the observer and is larger if the observer's area radius igelativity allows the occurrence of naked singularities, but
smaller. This is expected as geodesics with larger valués Ofthey may not directly radiate away energy to outside observ-
will stay near the center fo_r a longer time, and as the clou_OI i$rs. What this means exactly is that, although general rela-
collapsing they are more likely to get trapped. The numericaliyiv, allows the occurrence of a naked singularity, the radi-
study also shows that typically all such geodesics undergo goq energy in the electromagnetic spectrum does not reach

finite numbe_r (.Jf revolutions while they go out. The ”_‘a‘“ the distant observer, at least in the dust case. We need to
reason for this is that the effects of gravity are very domman%heCk such a statement for timelike and nonspacelike non-

near the center. Typically, these geodesics can revolve deti h ing f h ked sinqulari d al
around the center at the most a few times before escapinggeo etic paths coming from the naked singularity, and aiso

Further, by studying the redshift and luminosity along thefor, equations of state otr_\er than dust, when the naked singu-
various geodesics we have shown that, apart from one spg’!my may .have a com'pllt_:ated topology. We note, of course,
cial RNG (the Cauchy horizonin then<3 (i.e., a<3) case, that cosmic cen§orsh|p is not really a statement about the
along all other singular trajectories the redshift diverges fo€N€rgy escape, it is essentially a basic postulate about not
any comoving(nonsingulay observer and so the luminosity having outgoing causal curves from the singularity.
reaching the observer from the naked singularity will be zero Although for simplicity and clarity we have shown these
along such families. One could argue that even if a singléesults for the marginally bound case, it would be possible to
photon or a single wave front carrying huge energy escapegeneralize the same to nonmarginally bound cases using a
from the singularity with a finite redshift, that may destroy similar method, and depending on the valueaoheeded to
the cosmic censorship, because that can alter the qualitativeake R’/(r*" 1) finite, the results will be similar. This will
picture considerably. However, normally we do not expect ébe the case as, depending on the valuexpfarious func-
single wave front to emit an arbitrarily large amount of en-tions involved in this analysis can be expanded in a similar
ergy, although one does not know what happens near suchay near the central singularity. Further, we can expect time-
extreme regions. What we may say then is thatfer3 (i.e.,  like NRGs as well to come out of the naked singularity even
n=3) naked singularity energy along null geodesics is cenin these cases, as the study shows that they also have very
sored for all the trajectories. Far<3 (i.e.,n<3) it is cen-  similar behavior to that of null geodesics in the vicinity of
sored apart from the first trajectory, i.e., for trajectories alonghe singularity.
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