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Appearance of the central singularity in spherical collapse
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We analyze here the structure of nonradial nonspacelike geodesics terminating in the past at a naked
singularity formed as the end state of inhomogeneous dust collapse. The spectrum of outgoing nonspacelike
geodesics is examined analytically. The local and global visibility of the singularity is also examined by
integrating numerically the null geodesics equations. The possible implications of the existence of such fami-
lies for the appearance of a star in the late stages of gravitational collapse are considered. It is seen that the
outgoing nonradial geodesics give an appearance to the naked central singularity like that of an expanding ball
whose radius reaches a maximum before the star goes within its apparent horizon. The radiated energy~along
the null geodesics!, however, is shown to decay very sharply in the neighborhood of the singularity. Thus the
total energy escaping via nonradial null geodesics from the naked central singularity vanishes in the scenario
considered here.
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I. INTRODUCTION

The continual gravitational collapse of a massive ma
cloud results in either a black hole or a naked singular
depending on the nature of the regular initial data fro
which the collapse develops. An important developmen
the emerging realization that at least in the spherically sy
metric case both these final states seem to occur generi
@1#.

The theoretical properties and possible observational
natures of a black hole and a naked singularity would
quite significantly different from each other. An immedia
distinction is, that if the collapse ends in a black hole,
event horizon develops well before the occurrence of
singularity, and thus the regions of extreme physical con
tions ~e.g., blowing up densities and curvatures! are hidden
from the outside world. On the other hand, if the collap
develops into a globally naked singularity, then the energy
the regions neighboring the singularity can escape via
available nonspacelike geodesic paths or via other non
detic, nonspacelike trajectories to a distant observer.

In such a case, as postulated by some authors@2#, a huge
amount of energy could possibly be released, in princip
during the final stages of collapse from the regions close
the singularity. As suggested in@2# an enormous amount o
energy might be generated either by some kind of quan
gravity mechanism, or by means of an astrophysical proc
wherein the region simply turns into a fireball creati
shocks in the surrounding medium. One way to study
structure of these extreme regions is to examine the comp
spectrum of all nonspacelike geodesics through which
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energy could escape. Even if a fraction of the energy
generated is able to escape to a distant observer, an obs
tional signature could be generated. It therefore becom
quite important and interesting to look into this possibility
some detail, and to consider possible observable differen
in the two scenarios from the perspective of a faraway
server.

We therefore make such an attempt here to study the
pearance of the late stages of collapse. While our emph
in the present study will be on examining the null spectru
which is important, we also need to keep in mind the pos
bility that emissions could as well come through other no
spacelike geodesics or nongeodetic paths, which repre
high energy particles.

If the collapse ends in a black hole, the neighboring
gions of singularity will appear dark, hidden within the eve
horizon. However, the naked singularity scenario could
different in principle. Hence we analyze the possible appe
ance of these high curvature regions when the singularit
naked. In this connection, one of the most extensively st
ied models has been that describing the collapse of inho
geneous dust, where various features arising as collapse
states are well understood. It is known in this case that b
black holes and~locally and globally! naked singularities,
with either an asymptotically flat or a cosmological bac
ground, can develop depending on the nature of the in
data, which is specified in terms of the density and veloc
profiles for the collapsing shells at the onset of the colla
@3–5#. Hence, these provide an ideal situation to study
problem such as the above and to study the scenario de
oping in the later stages of collapse.

It has been shown that in the case of collapse ending
naked singularity, outgoing future directed radial null geod
sic ~RNG! families terminate in the past at the central nak
singularity. The observed appearance of a distant objec
the electromagnetic spectrum depends on the behavior o
full spectrum of null geodesics, including radial as well

a.
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nonradial trajectories. The behavior and contribution of n
radial null geodesics~NRNGs! could be significant for the
appearance of the singularity. Although the study of outgo
nonradial null geodesics terminating at a naked singularit
of theoretical interest in its own right, it becomes particula
essential in the context of the appearance of naked sing
regions when one realizes that past calculations of the
pearance of a collapsing star~nonsingular regions! depended
on the behavior of nonradial null geodesics in the late sta
of collapse@6#. In fact, in the late stages of collapse the ma
contribution comes from nonradial null geodesics, wh
form a ring atR53M . This ring then decays exponentiall
giving a distinct rapid decline of luminosity within a sho
time interval. It is also of interest to check if timelike non
radial geodesics~NRGs! also come out of the singularity.

We thus need to understand and analyze the behavio
nonradial geodesics in the vicinity of a naked singular
toward this end, which has not been done so far. Such
analysis not only is of theoretical interest in its own right, b
will also clarify several issues such as those above, thus
vealing the structure of the naked singularity better. In
following, Sec. II describes basic equations governing
Tolman-Bondi-Lamaiˆtre ~TBL! models, and in Sec. III we
consider nonradial geodesics emerging from the naked
gularity forming in such a collapse. Section IV discusses
luminosity aspect and in Sec. V some conclusions are p
posed.

II. THE TBL MODEL AND GRAVITATIONAL COLLAPSE

A collapsing dust cloud is described by the TBL met
@7#, which is given in comoving coordinates as

ds252dt21
R82

11 f
dr21R2~du21sin2 u df2!. ~1!

The energy-momentum tensor is that of dust:

Ti j 5ed t
id t

j , e5e~ t,r !5
F8

R2R8
, ~2!

where e is the energy density, and the area radiusR
5R(t,r ) is given by

Ṙ25 f ~r !1
F~r !

R
. ~3!

Here the overdot and prime denote partial derivatives w
respect to the coordinatest and r, respectively, and for the
case of collapse we haveṘ,0. The functionsF and f are
called the mass and energy functions, respectively, and
are related to the initial mass profile and velocity distributi
of shells in the cloud.

At this point we limit ourselves to the marginally boun
case because of the simplicity and clarity of the analysis.
results in the general case would be the same, however. F
marginally bound cloud (f 50), the integration of Eq.~3!
gives
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t2t0~r !52
2R3/2

3AF
, ~4!

wheret0(r ) is a constant of integration. Using the coordina
freedom for rescaling the radial coordinater we set

R~0,r !5r , ~5!

which gives

t0~r !5
2r 3/2

3AF
. ~6!

At the time t5t0(r ), the shell labeled by the coordinate r
dius r becomes singular where the area radiusR for the shell
becomes zero. We consider only situations where there
no shell crossings in the spacetime. A sufficient condition
this is that the density be a decreasing function ofr, which
may be considered actually to be a physically reasona
requirement, because for any realistic density profile the d
sity should be higher at the center, decreasing away from
center. The ranges of coordinates are given by

0<r b,`, 2`,t,t0~r !, ~7!

wherer 5r b denotes the boundary of the cloud. The quant
R8, which is also needed later in the equation of the geo
sics to check the visibility or otherwise of the central sing
larity, can be written as

R85
F8R

3F
1S 12

rF 8

3F DAr /R. ~8!

III. NONRADIAL GEODESICS IN TBL MODELS

The regular center in a spherically symmetric spaceti
can be the source of only radial geodesics. So when
central singularity is covered the center is observed b
distant observer by intercepting radial null geodesics till
time the event horizon forms, beyond which nothing is se
An outside observer would see radial photons from the c
ter, which would disappear much before the formation of
singularity. These photons do not stay in the cloud longer
this point it is important to note that, as in earlier discussio
of a collapsing star entering the event horizon, the role
nonradial geodesics cannot be overemphasized. The no
dial null geodesics emitted in late stages of collapse ten
revolve around the star and thus take a longer time to re
the distant observer. Therefore, even after the star has g
through its Schwarzschild radius, it leaves a ring of photo
at R53M . So a distant observer observing late stages
collapse sees a bright ring atR53M which decays exponen
tially. In the context of the formation of a naked singularit
therefore, it is essential that we examine this issue caref
and investigate the nonradial spectrum of null geodesics
9-2
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APPEARANCE OF THE CENTRAL SINGULARITY IN . . . PHYSICAL REVIEW D65 084009
A. Basic geodesic equations

The tangents to the outgoing geodesics are given by

Kt5
dt

dl
5

P

R
, Kr5

dr

dl
5

AP22 l 21BR2

RR8
, ~9!

Kf5
df

dl
5

l

R2 , ~10!

wherel is the affine parameter andP satisfies the differen-
tial equation

dP

dl
2

PR8

R
2~P22 l 21BR2!F Ṙ

R2
2

Ṙ8

RR8
G

2AP22 l 21BR2
P

R2 1BṘ50. ~11!

We can work in the equatorial planeu5p/2, with Ku

5(du/dl)50, and due to spherical symmetry this can th
be rotated to recover the same qualitative features for the
spectrum of null geodesics. In the above equationsB50 for
null geodesics,B521 for timelike geodesics, andB51 for
spacelike geodesics.

Using Eq.~3!, these equations can be written in the (r ,R)
plane as

dR

dra
5

R8

ar a21 F12AF

R
f

1

A12 l 2/P21BR/P2G , ~12!

wherea is a constant fixed by demanding thatR8/r a21 re-
mains finite. For the quantitiesf andP we have

df

dr
5

l

P

R8

RAP22 l 21BR2
~13!

and

dP

dr
5

PR8

R
2AP22 l 21BR2

1

2
AF

RF3R8

R
2

F8

F G
1

BRR8

AP22 l 21BR2
AF

R
, ~14!

respectively.
The above equations are a set of three coupled first o

ordinary differential equations. For a given value of the p
rameterl one has to specify three initial conditions~starting
values ofr, R, andf) and solve them simultaneously to g
the geodesic trajectories.

It follows from the above equations that fort,t0(0) and
r 50 the tangent equations givel 50 for self-consistency.
Thus no NRGs will be radiated by the center before
singularity is formed at the center atr 50.

We now turn our attention to nonradial geodesics in T
models near the central singularity. Definingu5r a, X
5R/u, Eq. ~12! can be written as
08400
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dR

du
5H~X,u!F12AL

X

1

A12 l 2/P21BXu/P2G[U~X,u!

~15!

where we have putR85H(X,u)r a21 andL5F/u. H(X,u)
is positive and nonzero for allr .0. In order to understand
the nature of the singularity in the context of nonradial ge
desics, one has to study the detailed behavior of the cha
teristic curves of the above first order equation in the vicin
of the singularity. If these curves terminate in the past a
singularity with a definite tangent then this is determined
the limiting value of X5R/r a5R/u at the singularityR
50,u50. If the future directed nonspacelike geodesics m
the singularity in the past with a definite value of tange
then using Eq.~12! and l’Hôpital’s rule along the geodesic
we can write

X0[ lim
R→0,u→0

X5 lim
R→0,u→0

R

u
5 lim

R→0,u→0

dR

du
[U~X0,0!

or

U~X,0!2X[V~X!50, ~16!

where U(X,u)5dR/du ~along the geodesics!, as defined
above.

If the above equation has a real positive rootX5X0 then
the singularity is at least locally naked@8#. In such a case
there is at least one geodesic that comes out of the singul
with R[X0r a. To check whether a family of nonspacelik
geodesics comes out along the given direction, one need
examine the higher order terms to get a constant of inte
tion. It turns out that for radial geodesics we have two so
tions, and along the larger solution~root! direction, which is
the Cauchy horizon~the first ray coming out of the singular
ity!, only one RNG comes out, while along the other dire
tion a family of infinitely many RNGs comes out of th
singularity. In thea,3 case, to lowest order this family ha
the same behavior as that of the apparent horizon near
singularity.

We want to solve these equations in a self-consistent m
ner near the center, requiring that the outcoming null geo
sics have a well-defined tangent at the singularity in a s
able plane. For simplicity and clarity, we assume the m
function to have the form

F5F0r 31Fnr 31n1higher order terms,

and we first consider only the null geodesics (B50). Later
we generalize the results to other geodesics.

For clarity we divide our further analysis into three ma
cases.

1. nË3, i.e., aË3

In this case, assuming thatl /P,1 and checking for self-
consistency, there are two kinds of behaviors possible foR,
as given by~a! R'X0r 112n/3 @where X05(2Fn/2F0)2/3#
~this is the direction of the Cauchy horizon! or ~b! R
9-3
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S. S. DESHINGKAR, P. S. JOSHI, AND I. H. DWIVEDI PHYSICAL REVIEW D65 084009
'X0r
3'F0r

3 @4,8#. In case~a!, from Eq.~14! ~assuming that
P remains nonzero! we get

P'P0r a5P0r 112n/3, ~17!

whereP0 is a constant of integration. So we get a contrad
tion, because 12 l 2/P2→2`. It follows that we cannot have
NRNGs coming out of the singularity along this direction

In case ~b! (R'X0r 3'F0r 3) @4,8# assuming 12 l 2/P2

.0 we get, from Eq.~14!,

P5P0e2[nFn/6(32n)F0
5/2] r n23

. ~18!

Thus in the limit of the singularityP blows up exponentially
so we get 12 l 2/P2→1 and we have a self-consistent sol
tion for the nonradial geodesics. One can also check
there are no self-consistent solutions for NRNGs along
other directions.

2. nÄ3, i.e., aÄ3

We can uniquely fixa53 and assuming that along th
geodesicsR5X0r 3, we get from Eq.~14!

P'P0r 23(2b0
2
22b021)/2b0(b021), ~19!

whereb05AX0 /F0. For P to blow up we need (2b0
222b0

21).0. This gives

b05AX0 /F0,b0crit5
11A3

2
. ~20!

Assuming thatP blows up, the root equation~16! reduces to
the same equation as for the radial null geodesics case
troducing X5F0x2 and j5F3 /F0

5/2 the root equation then
becomes

2x41x32jx1j50. ~21!

From the theory of quartic equations, this admits a real p
tive root for j,jcrit52(26115/A3)/2. Basically, if this
condition is satisfied then we have two real positive roo
The smallest value for the larger rootx1 is the same as the
largest value of the smaller rootx2 and it is the same a
b0crit ; this is achieved atj5jcrit . So the condition~20! is
never satisfied along the larger rootx1 ~Cauchy horizon!, and
is always satisfied along the smaller rootx2. SoP→0 along
the larger root, and we cannot get self-consistent real s
tions for the set of equations for the null geodesics. T
means we cannot have NRNGs coming out along the Cau
horizon direction. Along the smaller root direction this co
dition is always satisfied,P blows up, and we have a sel
consistent solution for the geodesic differential equati
That means we can have NRNGs coming out of the sin
larity only along the direction of the smaller root.

3. nÌ3, i.e., aÌ3

In this case we have to fixa5112n/3.3, soF/R→`,
and we cannot have any null geodesics coming out of
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singularity, which is always within a black hole. Th
Oppenheimer-Snyder collapse is a special case of this c
with n5`.

B. Non-null geodesics

Now we will check what happens for timelike (B521)
and spacelike (B51) NRGs. Even in these cases, in Eq
~12!–~14!, for all the singular geodesicsBR2 goes to zero as
we approach the center (r 50) and it is always negligible
compared to the other terms. So providedP remains nonzero
near the center, the root equation~16! remains the same a
that for null geodesics. Now if we also solve the equation
P @Eq. ~14!# in a self-consistent manner we see that for t
smaller rootP ~and so alsoKt) blows up and we get a self
consistent solution for the geodesic equations near the si
larity; the behavior of these geodesics near the singularit
very similar to that of the null geodesics. Similarly, we c
easily check that no nonradial geodesics can come out a
the larger root direction.

C. Global behavior

We now consider the global behavior of nonradial n
geodesics coming out of the singularity in various cases,
check whether there are any NRNGs that can be actu
seen by a faraway observer. Basically, we try to check
singular NRNGs~outgoing nonradial geodesics that term
nate in the past at the singularity!, and examine with what
maximum value ofl ( l 5 l max) they can meet the boundary o
the cloud r 5r c , when the boundary has area radiusR
5Rc . Here we fix the boundary in such a way that the de
sity goes to zero smoothly at the boundary. The outside
lution is Schwarzschild, with total massm5F(r c)/2. So with
our condition we fix

r c5S 2
31n

3

Fn

F0
D 1/n

.

Figures 1~a! and 2~a! show the graphs ofRc versus
l max/Pc ~where P5Pc at R5Rc and we give this as the
initial condition!. We see thatl max/Pc increases as we de
creaseRc . This is expected in a way as the geodesics w
larger value ofl max/Pc revolve more around the center, i.e
they remain in the inner region for longer times, so they
more likely to get trapped before reaching the larger val
of R. Figures 1~b! and 2~b! showf versusr while Figs. 1~c!
and 2~c! showR versusr for some singular and nonsingula
geodesics.

The considerations above point to NRNGs terminating
the past at a naked singularity that could reach a dis
external observer. Unlike the regular center of the clo
which cannot have nonradial geodesics terminating there
have a distinctly new scenario where an observer could
tercept NRNGs from the naked central singularity. Beca
of the high curvature in the singular regions, nonradial ph
tons revolve around the center and stay for a longer time
the cloud before reaching the surface and hence the dis
observer. Therefore, unlike the black hole case, where
center of the cloud disappears rather quietly, in the case
9-4
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FIG. 1. Various plots forF5r 324r 5. ~a! Plot showing the maximum value ofl max/Pc for various values ofRc . ~b! Plot showing the
geodesics withl 5 l max in the (r ,f) plane for two different values ofRc . ~c! Same geodesic in the (r ,R) plane.
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naked singularity the center will appear as nothing unus
up to the time a singularity is formed. However, once t
singularity is formed, it will appear rather differently.

Let us consider this phenomenon in some detail. Fo
distant observer, until the receipt of the first singular RN
from the naked singularity, the center will be observ
through the RNG and will appear as a regular center ins
the cloud. After the formation of the naked singularity, ho
ever, the observer will also start intercepting NRNGs wh
arrive later than their RNG counterparts. The observed p
tion through the NRNGs depends on the value of the imp
parameterl. The higher the value of the impact parameter
more time is spent by these photons in revolving inside
cloud and therefore they take longer time to come out. T
maximum value of the impact parameterl max(t0) is a func-
tion of time. Therefore, at any instant of time, after receivi
the first RNG from the naked singularity, the observer w
receive NRNGs within the rangel max(t)> l>0 ~for the cases
08400
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when there are families of singular RNGs coming out!. To a
distant observer, the photons will appear to be coming
just from the center but from a spherical region~with r 50 as
the center! having a radius corresponding tol max. In this
sense, therefore, the center will appear as a spherical
with an expanding radius. The expansion continues unt
maximum value ofl is reached. Apart from the visible ap
pearance of the naked singularity in the electromagn
spectrum, the observations in terms of high energy partic
traveling along nonspacelike curves will also be the sam
That is, unlike the black hole scenario, in the case of a na
singularity forming, the timelike particles will also appear
be coming from an expanding ball.

IV. LUMINOSITY FUNCTION FOR THE SINGULARITY

Normally most of the luminosity~energy! of an object
comes from the nonradial rays. We have shown above tha
9-5
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FIG. 2. Various plots forF5r 3230r 6. ~a! Plot showing the maximum value ofl max/Pc for various values ofRc . ~b! Plot showing the
geodesics withl 5 l max in the (r ,f) plane for two different values ofRc . ~c! Same geodesic in the (r ,R) plane.
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infinite number of nonradial geodesics come out of the na
singularity, along the non-Cauchy horizon direction. On
one RNG comes out of the singularity along the Cauc
horizon direction~the larger root! @8#. So, if any radiation
comes out of the singularity, it will normally be expected
come out along the smaller root direction through rays w
various values of the impact parameterl. From such a per-
spective, we need to consider the luminosity function
these rays for various observers.

Let us consider an observer at comoving coordinatr
5r o . The observed intensityI p of a point source is

I p5
P0

A0~11z!2 , ~22!

whereP0 is the power radiated by the source into the so
angle dV, and A0 is the area sustained by the rays at t
observer. The redshift factor (11z)2 appears because th
08400
d

y

h

r

power radiated is not the same as the power hitting the a
at the observer. In the case of RNGsA0}R0

2 whereR0 is the
area radius of the observer.

Let ua
(s) andua

(o) be the four-velocities of the source an
the observer and letE1 andE2 be two events connecting th
source and the observer through the RNG. The redshift fa
is given by

11z5
@Kaua

(s)#E1

@Kaua
(o)#E2

, ~23!

where the numerator and denominator are evaluated at ev
E1 andE2, at the source and observer, respectively, with

ua
(s)5d t

a , ua
(o)5d t

a . ~24!
9-6
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APPEARANCE OF THE CENTRAL SINGULARITY IN . . . PHYSICAL REVIEW D65 084009
Taking the source as the naked center atr 50 and the ob-
server atr 5r o we have

11z}
~Kt!s

~Kt!o
. ~25!

In the evaluation of the redshift, the behavior of the ta
gent vector componentKt is important. It is finite at the
nonsingular observer who is sufficiently far away from t
center, i.e.,r o@0. Therefore, the behavior ofKt at the naked
singularity determines the behavior of the redshift factor.
discussed earlier, along the trajectories of interestKt di-
verges very rapidly~exponentially ifa,3, and by a large
power law if a53). This means that the redshift diverg
very rapidly for the singular rays of our interest and for a
nonsingular observer it will be infinite.~In a way the expo-
nential divergence of the redshift fora,3 is expected as
these rays stay very close to the apparent horizon nea
singularity and in such a situation the redshift in t
Schwarzschild case also diverges exponentially.! As the red-
shift diverges, andA0 is finite, classically the luminosity o
the naked singularity along such families should vanish.

It is very difficult to get rid of this dominance of rapidl
diverging Kt near the singularity on the redshiftz, and so
also the dominance of this diverging redshift on the lumin
ity. That means the luminosity of the naked singularity alo
such NRNGs for an observer will be zero, i.e., no energy w
reach the observer along such families from the naked
gularity, at least classically. Therefore, in the case above,
naked singularity may not be physically visible to faraw
observers directly by means of emitted light. However,
the a,3 naked singularity cases, if an enormous amoun
radiation is emitted just along the Cauchy horizon, it may
possible that a measurable fraction of the emitted energy
reach an observer. This may happen as along this wave
Kt and so also the redshift remain finite@9#. But this obser-
vation of luminosity will only be instantaneous as only
single light ray is allowed to escape.

All the same, the possibility of mass emission via timeli
or nonspacelike nongeodetic families of paths coming ou
the naked singularity remains open. In the case of suc
violent event being visible, particles escaping with ultrare
tivistic velocities cannot be ruled out from this neighbo
hood. It is also to be noted that the classical possibilities s
as that above regarding the probable light or particle em
sion, or otherwise, from a naked singularity may not perh
offer a serious physical alternative one way or the other. T
reason is that in all physical situations classical general r
tivity will break down once the densities and curvatures
sufficiently high so that quantum or quantum gravity effe
become important in the process of an endless collapse. S
quantum effects would come into play much before the
tual formation of the classical naked singularity, which m
possibly be smeared out by quantum gravity. The key po
then is the possible visibility, or otherwise, of these e
tremely strong gravity regions, which develop in any case
the vicinity of the classical naked singularity. It is then t
causal structure, that is, the communicability or otherwise
these extremely strong gravity regions that will make
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essential difference as far as the physical consequence
naked singularity formation are concerned.

In the black hole case, resulting from the collapse o
finite sized object such as a massive star, such strong gra
regions, or what we may call ‘‘fireballs,’’ will be necessari
covered by an event horizon of gravity, well before the c
vature conditions becomes extreme~e.g., well before the col-
lapsing cloud goes to the Planck size!. In such a situation, the
quantum effects, even if they were causing qualitat
changes closer to the singularity, will be of no physical co
sequences, because no causal communications are all
from such regions. On the other hand, if the causal struc
were that of a naked singularity, communications from su
a quantum gravity dominated extreme curvature ball wo
be visible in principle, either directly, or via secondary e
fects such as shocks produced in the surrounding med
Then we may have a chance to observe directly the quan
gravity effects from such fireballs generated due to ste
collapse.

V. CONCLUSIONS

By studying NRNGs we have demonstrated that, wh
ever the singularity is naked, along with RNGs, NRNGs a
come out of the singularity. One can also say that if NRN
came out of the singularity then RNGs will also come o
because we have shown that eventually the root equation
the existence of geodesics does not depend on the valu
the impact parameterl. This is similar to the recent pape
@10# on null geodesics, which appeared while this was be
written. We have also shown that similar results exist for
timelike and spacelike geodesics also. Basically we see
in comoving coordinates all the geodesics have very sim
behavior near the central singularity.

The existence of nonradial geodesics coming out can
way make the naked singularity look as if it has a finite a
to an outside observer. This possibly happens because,
though the singularity is at the center of symmetry and g
desics can come out of it, gravity is very powerful and dom
nant for such trajectories.

When the singularity is naked, RNGs come out of t
singularity with two possible tangents~roots!. Along the
larger tangent~Cauchy horizon! direction only one RNG can
come out, and along the smaller tangent direction an infin
family of RNGs come out of the singularity. We have show
here that NRNGs come out only along the direction of t
smaller root, i.e., no NRNG comes out along the Cauc
horizon direction which corresponds to the larger root. T
gether with earlier results@8#, this means that only a singl
radial null geodesic comes out of the naked singularity alo
the Cauchy horizon direction. In the marginally bound ca
( f 50), if the mass function has the formF5F0r 3

1Fnr 31n1higher order terms, then whenn,3 the Cauchy
horizon has the behaviorR}r a ~where a5112n/3,3),
while along the other direction~smaller root! the geodesics
have a behavior similar to that of the apparent horizon, i
R[F0r 3. In the n53 case,a53, and along both the tan
gentsR}r 3, but the values of the proportionality constan
are different.
9-7
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By studying the global behavior of geodesic families u
ing numerical methods, we have shown that, even when
value of l is allowed near the singularity, only the geodes
with a certain maximum value ofl max/Pc can reach any
given outside observer. This value depends on the positio
the observer and is larger if the observer’s area radiu
smaller. This is expected as geodesics with larger valuesl
will stay near the center for a longer time, and as the clou
collapsing they are more likely to get trapped. The numer
study also shows that typically all such geodesics underg
finite number of revolutions while they go out. The ma
reason for this is that the effects of gravity are very domin
near the center. Typically, these geodesics can rev
around the center at the most a few times before escapi

Further, by studying the redshift and luminosity along t
various geodesics we have shown that, apart from one
cial RNG~the Cauchy horizon! in then,3 ~i.e.,a,3) case,
along all other singular trajectories the redshift diverges
any comoving~nonsingular! observer and so the luminosit
reaching the observer from the naked singularity will be z
along such families. One could argue that even if a sin
photon or a single wave front carrying huge energy esca
from the singularity with a finite redshift, that may destro
the cosmic censorship, because that can alter the qualit
picture considerably. However, normally we do not expec
single wave front to emit an arbitrarily large amount of e
ergy, although one does not know what happens near s
extreme regions. What we may say then is that fora53 ~i.e.,
n53) naked singularity energy along null geodesics is c
sored for all the trajectories. Fora,3 ~i.e., n,3) it is cen-
sored apart from the first trajectory, i.e., for trajectories alo
t.
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the larger root direction. Thus, for regions of spacetim
where the curvature diverges fast enough, the redshift is
finite, thus censoring energy. In a sense this result can
considered to be supporting the cosmic censorship hyp
esis, if we mean by the latter a statement such as that gen
relativity allows the occurrence of naked singularities, b
they may not directly radiate away energy to outside obse
ers. What this means exactly is that, although general r
tivity allows the occurrence of a naked singularity, the ra
ated energy in the electromagnetic spectrum does not re
the distant observer, at least in the dust case. We nee
check such a statement for timelike and nonspacelike n
geodetic paths coming from the naked singularity, and a
for equations of state other than dust, when the naked sin
larity may have a complicated topology. We note, of cour
that cosmic censorship is not really a statement about
energy escape, it is essentially a basic postulate about
having outgoing causal curves from the singularity.

Although for simplicity and clarity we have shown thes
results for the marginally bound case, it would be possible
generalize the same to nonmarginally bound cases usin
similar method, and depending on the value ofa needed to
makeR8/(r a21) finite, the results will be similar. This will
be the case as, depending on the value ofa, various func-
tions involved in this analysis can be expanded in a sim
way near the central singularity. Further, we can expect tim
like NRGs as well to come out of the naked singularity ev
in these cases, as the study shows that they also have
similar behavior to that of null geodesics in the vicinity
the singularity.
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