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Hidden symmetries in deformed microwave resonators
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~Received 16 August 2001; published 11 October 2002!

We explain the ‘‘hidden symmetries’’ observed in wave functions of deformed microwave resonators in
recent experiments. We also predict that other such symmetries can be seen in microwave resonators.
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Lauber et al. @1# experimentally studied the pattern o
Berry phases that emerges when a microwave cavity is
clically deformed around a rectangular shape. Standing e
tromagnetic waves in the cavity can be mapped and
‘‘wave functions’’ followed through the cyclic deformatio
to measure the Berry phase. Apart from the Berry pha
which were primarily of interest in Ref.@1#, those authors
also noticed a curious symmetry: the standing wave patt
at different deformations are related. Subsequent theore
work @2,3# has clarified the pattern of Berry phases seen
the experiment. However, the ‘‘hidden symmetry’’ has n
been explained so far. The purpose of this Brief Report is
provide an understanding of the ‘‘hidden symmetry’’ a
thus a complete and correct interpretation of the experim
described in@1#.

Consider a rectangular cavity~see Fig. 1! with sides (a,b)
havingn degenerate modes: the scalar Laplacian2¹2 hasn
degenerate eigenfunctions. If the cavity is deformed, the
generacy will in general be broken. Let us suppose that
deformation consists~as in the experiment of Ref.@1#! of
moving the corner around its undeformed position so that
rectangle is deformed to a quadrilateral. This deformat
can be effected in the formalism by performing a coordin
transformationx5u(11av),y5v(11bu) @where (a,b)
are the deformation parameters# which maps the deformed
rectangle in the (x,y) plane to an undeformed rectangle
the (u,v) plane. Transforming the Laplacian to curviline
(u,v) coordinates, we find H52¹25(21/Ag)(]/
]xm)Aggmn]/]xn. Matrix elements of H have the
form ^c1uHuc2&52*d2xAgc1* ¹2c252*d2xc1* (]/]xm)
Aggmn(]/]xn)c2. Expanding to first order ina,b, we then
get H5H01H1, where H052(]u]u1]v]v) and H15a f
1bg, with f 5vX1uY and g52uX1vY, expressed in
terms of the differential operatorsX5]u]u2]v]v and Y
52]u]v .

The unperturbed HamiltonianH0 has the discrete symme
tries P1 :u→a2u, P2 :v→b2v, the mirror planes of the
rectangular box. We now restrict attention to t
n-dimensional degenerate subspaceHn of H0 and choose
eigenstates ofH0 to have definite parity with respect to bo
these reflections. In fact, we choose these in the formu i &
5unimi&5(2/Aab)sin(niup/a)sin(mivp/b), whereni ,mi are
positive integers. Since the states are all degenerate e
states ofH0, we haveni

2/a21mi
2/b25nj

2/a21mj
2/b2 for all

i , j . In particular ni5nj⇒mi5mj . These states are als
eigenstates of X with eigenvalues l i5(ni

2p2/a2

2mi
2p2/b2). It follows that ^ i uvXu j &5l j^ i uvu j &
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5lj^niunj&^miuvumj&5lidij^miuvumi&. From P2vP25(b2v), it
follows that ^mi uvumi&5^mi uP2vP2umi&5b^mi umi&
2^mi uvumi&. So we conclude that^mi uvumi&5b/2 and so, in
Hn , vX5bX/2 and similarlyuX5aX/2. The form of the
perturbations is thusf 5bX/21uY, g52aX/21vY.

The ‘‘mirror symmetry’’ observed by Lauberet al. in their
experiment is related to the way the unperturbed levels tra
form under parity. We consider all possible cases and t
find the necessary and sufficient conditions for this symm
try to be observed. Let us introduces1i as theP1 parity of
the ith state (P1u i &5s1i u i &) and similarlys2i as theP2 par-
ity of the ith state. The different cases are listed below w
an example~for n53) illustrating each nontrivial case.

~1! s1i5s ands2i5s8 for all i 51,2, . . . ,n wheres,s8
can take values61 @ Example:a5A3, b51, and levels
(2,6), (8,4), (10,2)]. In this case ^ i uuYu j &
5^ i uP2(P2uY P2)P2u j &52^ i uuYu j &50 and similarly
^ i uvYu j &5^ i uP1(P1vY P1)P1u j &52^ i uvYu j &50. Thus f
5bX/2 andg52aX/2 and this is an uninteresting case b
cause the perturbations do not span a two-dimensional sp

~2! The products1is2i5s for all i, but s1i and s2i

are not the same for alli @Example: a5A3, b51, and
levels (1,3),(4,2),(5,1)]. In this case ^ i uuYu j &
5^ i uP2P1(P1P2uY P2P1)P1P2u j &5^ i u(a2u)Yu j &, which
implies uY5aY/2. Also ^ i uvYu j &
5^ i uP2P1(P1P2vY P2P1)P1P2u j &5^ i u(b2v)Y j& and this
gives vY5bY/2. Thus in this casef 5bX/21aY/2 and g
52aX/21bY/2. Defining new coordinatesa5ba8
1ab8, b52aa81bb8, we have H15a f 1bg5a8(b f
2ag)1b8(a f1bg)5(a21b2)(a8X/21b8Y/2). Since
PXP5X, PY P52Y for P5P1 ,P2; hence we see tha

FIG. 1. A deformation of a rectangle into a quadrilateral. T
vertex V5(a,b) is moved to the pointP5V1(dx,dy)5V
1ab(a,b). We consider an experiment whereP is moved around
the elliptic path shown in the figure.
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wave functions at pointsp(a8,b8) andp8(a8,2b8) can be
related by eitherP1 or P2. Proof: LetHpucp&5eucp&. Then
P1H1pP1P1ucp&5eP1ucp& or H1p8P1ucp&5eP1ucp&,
which implies, assuming all degeneracies have been lif
that ucp8&56P1ucp&. This is the case studied by Laub
et al. @1#. Note that theb8 axis is along the long diagonal o
the rectangular cavity.

~3! s1i5s for all i, but s2i is not the same for alli
@Example:a52, b51, and levels (2,18),(12,17),(20,15)].
In this casef 5bX/21uY and g52aX/2. The coordinate
transformationa5ab8, b5a81bb8 gives H15a f 1bg
5a8g1b8(a f1bg)52a8aX/21b8auY. Since P2XP2
5X and P2uY P252uY, it follows that wave functions a
pointsp(a8,b8) andp8(a8,2b8) can be related byP2.

~4! s2i5s for all i, but s1i is not the same for alli. This
case is similar to~3!.

~5! Neither ofs1i ,s2i ,s1is2i is the same for alli. It can
be proved that this case cannot be realized for any choic
a,b,ni ,mi . Proof: We enumerate all the possibilities. We c
e

04410
d,

of

haveni
2/a21mi

2/b25nj
2/a21mj

2/b2 only if b2/a2 is rational.
Let b2/a25p/q, wherep andq are relatively prime. We find
that ni

2p1mi
2q5nj

2p1mj
2q5N for all i , j . Thus we need to

consider the following cases classified according to the p
ity ~odd or even! of (p,q): ~a! (o,o), ~b! (o,e), ~c! (e,o),
whereo ande denote odd and even parities, respectively. F
case ~a!, if N is even then the states can have parit
(P1 ,P2) either (2,2) or (1,1). If N is odd then they can
have parity (1,2) or (2,1). Thus the only combinations
we can get belong to type 1 or 2. For case~b!, if N is even
then the states can have parity (1,1) or (1,2). If N is odd
then they can have parity (2,1) or (2,2). In this case the
possible combinations belong to type 3. The case~c! leads to
type ~3!.

Thus there are no examples of type 5.
In summary, we have explained the mirror symmetry

@1# in the framework of first-order perturbation theory~see
@3,4# for the limitations of this theory! and noticed other
situations where such symmetry may be observed.
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