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Phasing of gravitational waves from inspiralling eccentric binaries
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We provide a method for analytically constructing high-accuracy templates for the gravitational-
wave signals emitted by compact binaries moving in inspiralling eccentric orbits. In contrast to the
simpler problem of modeling the gravitational-wave signals emitted by inspiralling circular orbits,
which contain only two different time scales, namely, those associated with the orbital motion and the
radiation reaction, the case of inspiralling eccentric orbits involves three different time scales: orbital
period, periastron precession, and radiation-reaction time scales. By using an improved ‘‘method of
variation of constants,’’ we show how to combine these three time scales, without making the usual
approximation of treating the radiative time scale as an adiabatic process. We explicitly implement our
method at the 2.5PN post-Newtonian accuracy. Our final results can be viewed as computing new
‘‘postadiabatic’’ short-period contributions to the orbital phasing or, equivalently, new short-period
contributions to the gravitational-wave polarizations, h�;�, that should be explicitly added to the ‘‘post-
Newtonian’’ expansion for h�;�, if one treats radiative effects on the orbital phasing of the latter in the
usual adiabatic approximation. Our results should be of importance both for the LIGO/VIRGO/GEO
network of ground based interferometric gravitational-wave detectors (especially if Kozai oscillations
turn out to be significant in globular cluster triplets) and for the future space-based interferometer
LISA.
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I. INTRODUCTION

Inspiralling black hole binaries are considered to be
the most probable source of detectable gravitational ra-
diation for the first generation laser interferometric
gravitational-wave detectors that are operational or near-
ing completion of their construction phase [1]. The above
understanding is based on both astrophysical considera-
tions [2] and the availability of highly accurate general
relativistic theoretical waveforms required to pluck the
weak gravitational-wave signal from the noisy interfero-
metric data [3]. Inspiralling compact binaries are usually
modeled as point particles in quasicircular orbits. For
long lived compact binaries, the quasicircular approxima-
tion is quite appropriate, as the radiation reaction de-
creases the orbital eccentricity to negligible values by
the epoch the emitted gravitational radiation enters the
sensitive bandwidth of the interferometers. It is easy to
deduce that, for an isolated binary, the eccentricity goes
down roughly by a factor of 3, when its semimajor axis is
halved [4].

In recent times, however, scenarios involving
compact eccentric binaries are being suggested as poten-
tial gravitational-wave sources even for terrestrial
gravitational-wave detectors. For instance, one such pro-
posed astrophysical scenario [5] involves hierarchical
triplets (say, 123), usually modeled to consist of an inner
(say, 12) and an outer binary (say, 03, where 0 denotes the
center of mass of the 12 binary). If the mutual inclination
angle between the orbital planes of the inner and the outer
04=70(6)=064028(23)$22.50 70 0640
binary is large enough, then the time averaged tidal force
on the inner binary may induce oscillations in its eccen-
tricity, known in the literature as the Kozai mechanism
[6]. It was shown that, in globular clusters, the inner
binaries of hierarchical triplets undergoing Kozai oscil-
lations can merge under gravitational radiation reaction
[5]. Later, it was shown that a good fraction of such
systems will have eccentricity �0:1, when emitted gravi-
tational radiation from these binaries passes through
10 Hz [7].

It is also believed that the effect of orbital eccentricity
will have to be modeled accurately while computing
theoretical waveforms for compact binaries relevant for
the space-based laser interferometric gravitational-wave
detector LISA [8]. The above statement is supported by a
recent finding that by observing stellar mass black hole
binaries in highly eccentric orbits—which may be com-
mon in globular clusters—one can estimate accurately
not just the intrinsic binary parameters such as masses
and eccentricity, but even the position of the host cluster
[9]. It is also well known that the cosmological super-
massive black hole binaries, embedded in surrounding
stellar populations, would be powerful gravitational-
wave sources for detectors such as LISA [10]. However,
the question whether these binaries will be in a quasicir-
cular or an inspiralling eccentric orbit by the time their
gravitational waves are detectable by LISA is not yet
settled [11]. Recently, it was suggested that, if the Kozai
mechanism were operative, these supermassive black hole
28-1  2004 The American Physical Society
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binaries, in highly eccentric orbits, would merge within
the Hubble time [12]. Very recently, it was shown that,
using a very-long-baseline interferometer, the unresolved
core of the radio galaxy 3C 66B executes well-defined
elliptical motions with a yearly period, which was inter-
preted as the first direct evidence for the detection of a
supermassive black hole binary [13]. The above observa-
tion raises the interesting possibility of being able to
detect gravitational waves from supermassive black hole
binaries in eccentric orbits using LISA.

Even though various versions of ‘‘ready to use’’ high-
accuracy search templates for inspiralling compact bi-
naries with arbitrary masses in quasicircular orbit exist
[3], so far none is available for compact objects in inspir-
alling eccentric orbits. Before characterizing the strategy
and new results presented in this paper, let us summarize
the relevant existing literature on the influence of eccen-
tricity on the gravitational-wave polarizations h� and h�,
with and without including the gravitational radiation
reaction. After the seminal work of Peters and Mathews
[14], it was in the context of spacecraft Doppler detection
of gravitational waves from compact binaries that the
first explicit expressions for Newtonian accurate
gravitational-wave polarization states were derived [15].
Using the method of osculating orbital elements and a
numerical integration approach, the effects of eccentric-
ity and dominant radiation damping on h� and h�
was studied in Ref. [16]. First- and first-and-half-post-
Newtonian accurate analytic expressions for far-zone
fluxes and gravitational-wave polarizations, for compact
binaries in eccentric orbits, were computed in a series of
papers in Ref. [17]. Using Newtonian accurate orbital
motion, the authors of Refs. [18,19] studied the effect on
gravitational-wave polarizations of introducing by hand
some secular effects either in the longitude of the perias-
tron [18] or in the semimajor axis and eccentricity [19].
Using such waveforms, the influence of eccentricity on
the signal to noise ratio in gravitational-wave data analy-
sis was examined in Refs. [19–21]. These waveforms
were also used to show that LISA will be sensitive to
eccentric galactic binary neutron stars [22] and that, by
measuring their periastron advance, accurate estimates
for the total mass of these binaries may be obtained [23].
However, the widely used gravitational-wave templates,
to detect gravitational waves from compact binaries in
quasicircular orbits, are based on the second post-
Newtonian accurate expressions for h� and h�, supple-
mented by expressions giving adiabatic time evolution for
the orbital phase and frequency also to the second post-
Newtonian order [24,25] [however, see [26] for the (nu-
merical) construction of gravitational-wave templates
going beyond the adiabatic approximation in the case of
quasicircular orbits]. The second post-Newtonian order,
usually referred to as the 2PN order, gives corrections to
leading order contributions in gravitational theory, to the
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order of ��v=c�4 � �Gm=c2r�2, where m, v, and r are the
total mass, orbital velocity, and the separation of the
binary, respectively. The 2PN contribution to the gravi-
tational waveform, required for the construction of h�
and h�, and the associated far-zone fluxes for binaries
moving in general eccentric orbits, in harmonic gauge,
were computed in Refs. [27,28]. Employing the 2PN
accurate generalized quasi-Keplerian parametrization of
Damour, Schäfer, and Wex [29,30] available in Arnowitt,
Deser, and Misner (ADM) coordinates to represent rela-
tivistically moving binaries in eccentric orbits, 2PN cor-
rections to the rate of decay of the orbital elements of the
representation as well as the explicit expressions for h�
and h� were provided in Refs. [28,31,32]. The above
mentioned expressions for h� and h� represent gravita-
tional radiation from an eccentric binary, during that
stage of inspiral where the gravitational radiation reaction
is so small that the orbital parameters can be treated as
essentially unchanging over a few orbital periods (‘‘adia-
batic approximation’’). The effects of eccentricity, ad-
vance of periastron, and orbital inclination on the
power spectrum of the dominant Newtonian part of the
polarizations were also presented in Ref. [31].

The aim of this paper is to provide a method for
explicitly constructing high-accuracy waveforms emitted
by compact binaries moving in inspiralling eccentric
orbits. Compared to the existing high-accuracy wave-
forms for inspiralling circular orbits [3], the inclusion
of orbital eccentricity into such templates is a nontrivial
task as eccentricity brings along a new physical aspect,
the precession of the periastron, and thus one must con-
tend with precession and radiation reaction at the same
time. In the quasicircular case, there are two time scales
related to the orbital period and the radiation reaction. In
the quasieccentric case, one has a third additional time
scale related to the precession of periastron. The technical
problem we tackle and solve below is that of combining in
a consistent framework these three time scales, without
making the usual approximation of treating the radiation-
reaction time scale as an adiabatic process. We then ex-
plicitly implement our method at the ‘‘2PN� 2:5PN’’
accuracy, i.e., the effect of perturbing a ‘‘2PN-accurate
analytic’’ description of eccentric orbits by the 2.5PN
level radiation reaction. It is useful to note that the
gravitational-wave observations of inspiralling compact
binaries are analogous to the high precision radio-wave
observations of binary pulsars. The latter makes use of an
accurate relativistic ‘‘timing formula,’’ which requires
the solution to the relativistic equation of motion for a
compact binary moving in an elliptical orbit, while the
former demands accurate ‘‘phasing,’’ i.e., an accurate
mathematical modeling of the continuous time evolution
of the gravitational waveform. The mathematical formu-
lation, which resulted in an accurate timing formula, as
given in Refs. [33,34], was obtained by one of us many
-2
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years ago [35–37]. The present work will rely on tech-
niques from Refs. [35–37] to combine the above men-
tioned three time scales to implement post-Newtonian
accurate phasing for compact binaries moving in ellipti-
cal orbits.

The plan of the paper is the following. In Sec. II, we
outline the steps required to do the phasing. The method
we use to find the domain of validity of our approach is
presented in Sec. III. In Sec. IV, we formulate the proce-
dure required to construct time evolving h� and h�. We
apply, in Sec. V, the formalism to do the 2.5PN accurate
phasing. Section VI displays the expressions required to
extend the phasing to higher-PN orders. Finally, in
Sec. VII, we summarize our approach and results and
point out possible future extensions.

II. THE PHASING OF GRAVITATIONAL
WAVEFORMS

The theoretical templates for compact binaries, re-
quired to analyze the noisy data from the detectors, as
noted earlier, usually consist of h� and h�, the two
independent gravitational-wave (GW) polarization
states, expressed in terms of the binary’s intrinsic dy-
namical variables and location. These two basic polar-
ization states h� and h� are given by

h� � 1
2�pipj � qiqj�hTTij ; (1a)

h� � 1
2�piqj � pjqi�hTTij ; (1b)

where hTTij , the transverse-traceless (TT) part of the ra-
diation field, is expressible in terms of a post-Newtonian
expansion in �v=c� and where p and q are two orthogonal
unit vectors in the plane of the sky, i.e., in the plane
transverse to the radial direction linking the source to
the observer.

The TT radiation field is given, by the existing
gravitational-wave generation formalisms [24,25,27], as
a post-Newtonian expansion of the form

hTTij �
1

c4

�
h0ij �

1

c
h1ij �

1

c2
h2ij �

1

c3
h3ij �

1

c4
h4ij �

1

c5
h5ij

�
1

c6
h6ij � � � �

�
; (2)

where, for instance, the leading (‘‘quadrupolar’’) ap-
proximation is given (in a suitably defined ‘‘center-of-
mass frame;’’ see below) in terms of the relative separa-
tion vector x and relative velocity vector v as

1

c4
�h0km� �

4G�

c4R0
P ijkm�N�

�
vij �

Gm
r

nij

�
; (3)

where P ijkm�N� is the usual transverse-traceless projec-
tion operator projecting normal to N, where N � R0=R0,
R0 being the radial distance to the binary. The reduced
mass of the binary � is given by m1m2=m, where m 

m1 �m2 is the total mass of the binary consisting of
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individual masses m1 and m2. We also used vij 
 vivj
and nij 
 ninj, where vi and ni are the components of the
velocity vector v � dx=dt and the unit relative separation
vector n � x=r, respectively, where r � jxj. When in-
serting the explicit expression of h0ij and its higher-PN
analogues h1ij; h

2
ij; . . . , which are currently known up to

h4ij [27,28,31] (h5ij is currently available for circular orbits
[38]), one ends up with a corresponding expression for the
two independent polarization amplitudes [Eqs. (1)] as
functions of the relative separation r and the ‘‘true anom-
aly’’ �, i.e., the polar angle of x, and their time deriva-
tives,

h�;��r;�; _r; _�� �
1

c4

�
h0�;��r;�; _r; _��

�
1

c
h1�;��r;�; _r; _��

�
1

c2
h2�;��r; �; _r; _��

�
1

c3
h3�;��r; �; _r; _��

�
1

c4
h4�;��r; �; _r; _�� � � � �

�
: (4)

For instance, if we follow the conventions used in
Refs. [25,27] for choosing the orthonormal triad p, q, N
(namely, N from the source to the observer and p toward
the correspondingly defined ‘‘ascending’’ node), i.e., if
we use

x � pr cos�� �q cosi�N sini�r sin�; (5)

where i denotes the inclination of the orbital plane with
respect to the plane of the sky, the lowest-order contribu-
tion in Eq. (4) reads

1

c4
h0��r; �; _r; _�� � �

Gm�

c4R0

�
�1� C2�

��
Gm
r

� r2 _�2

� _r2
�
cos2�� 2 _rr _� sin2�

�

�S2
�
Gm
r

� r2 _�2 � _r2
��
; (6a)

1

c4
h0��r; �; _r; _�� � �2

Gm�C

c4R0

��
Gm
r

� r2 _�2

� _r2
�
sin2�� 2 _rr _� cos2�

�
; (6b)

where � 
 �=m 
 m1m2=�m1 �m2�
2, and C and S are

shorthand notations for cosi and sini, respectively. The
orbital phase is denoted by �, _� � d�=dt, and _r �
dr=dt � n � v, where v � p� _r cos�� r _� sin�� �

�q cosi�N sini�� _r sin�� r _� cos��. We note that in our
-3
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expressions for h� and h�, the coefficients of cos2� and
sin2� differ from those derived in Ref. [31] by a minus
sign, as in that paper the true anomaly � was measured
from q rather than from the line of ascending node as
done here and in Ref. [25].

Having in mind the existence of expressions such as
Eq. (6) giving the GW amplitudes h�, h� in terms of the
relative motion x, v of the binary, it is clear that they must
be supplemented by explicit expressions describing the
temporal evolution of the relative motion, i.e., describing
the explicit time dependences r�t�, ��t�, _r�t�, and _��t�. We
refer to, as phasing, an explicit way to define the latter
time dependences, because it is the crucial input needed
beyond the ‘‘amplitude’’ expansions, given by Eqs. (4), to
derive some ready to use waveforms h�;��t�.

Let us note two things about the structure sketched
above for h�;�. First, the possibility to express the GW
polarization amplitudes in terms of only the relative
motion x, v relies on the possibility to go to a suitable
center-of-mass frame. The validity of a center-of-mass
theorem up to order c�5 inclusive, i.e., in the presence of
the leading radiation reaction, was first shown in Ref. [36]
(in harmonic coordinates). The analogous result, in ADM
coordinates, was obtained in Ref. [39], where it was
shown that there existed six first integrals of the 2.5PN
equations of motion: a total momentum P i

�5� � P i
�0� �

c�2P i
�2� � c�4P i

�4� � c�5P i
�5� and center-of-mass con-

stant Ki
�5� 
 Gi

�5� � tP i
�5�, which could both be set to

zero by applying a suitable Poincaré transformation. The
recent obtention of (manifestly or not) Poincaré invariant
3PN equations of motion [40,41] and the construction of a
corresponding complete set of 3PN conserved quantities
[42,43] allows one to extend the construction of P i and
Ki 
 Gi � tP i to order c�6 inclusive and thereby define
a 3PN-accurate center-of-mass frame [44]. [Note, how-
ever, that the c�5 contribution Gi

�5� to Gi
�6� introduced by

Ref. [44] coincides with Gi
�5� of Ref. [36] only in the

center-of-mass frame.] At the next PN level, the above
3PN ‘‘conserved quantities’’ will not be conserved any-
more because of the 3.5PN component of radiation reac-
tion, so that

_P i
�6� � O

�
1

c7

�
; _Ki

�6� � O

�
1

c7

�
: (7)

The O�c�7� ‘‘recoil’’ of the center of mass implied by
Eqs. (7) is expected to influence the waveform only at the
O�c�8� level. Indeed, if we think of the binary as a GW
source emitting the ‘‘relative’’signal, given by Eqs. (6), in
its (instantaneous) rest frame (namely, the above defined
3PN center-of-mass frame), the time-dependent recoil of
the latter rest frame will introduce both a N � vCM=c
Doppler shift of the phasing and a corresponding modi-
fication of the amplitudes h�;�.
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Second, we should mention that the possibility to ex-
press h�;� only in terms of r, �, and their time deriva-
tives holds because we restricted ourselves to nonspinning
objects. In the presence of spin interactions, the orbital
plane is no longer fixed in space and one needs to intro-
duce further variables, notably a (slowly varying) ‘‘lon-
gitude of the node’’ �. Correspondingly, the polarization
direction p cannot be defined anymore as the line of
nodes. We note in this respect that such a situation was
dealt with in the problem of the timing of binary pulsars
[34] and it might be advantageous to use the conventions
used there to define p and q. Namely, in terms of Fig. 1 of
Ref. [34], p � I0, q � J0, but note that the binary pulsar
convention uses as the third vector I0 � J0, the direction
from the observer to the source. Such a convention is
natural when one thinks of the actual observation of a
signal somewhere on the sky, as seen by us.

Finally, one should make clear the coordinate systems
that we use. Indeed, the explicit functional forms for
h��r; �; _r; _��; h��r;�; _r; _�� as well as the phasing rela-
tions r�t�, ��t�, _r�t�, and _��t� depend on the coordinate
system used, though the final results h��t� and h��t� do
not [note that hTTij and therefore h��t� and h��t� are
coordinate independent asymptotic quantities]. Here one
has to face a slight mismatch between the harmonic
coordinate systems, in which standard GW generation
formalisms derive the amplitude expressions Eqs. (4)
above, and the ADM coordinate systems which allow
one to derive (when neglecting radiation reaction) a
rather simple and elegant ‘‘quasi-Keplerian’’ form of the
general (eccentric) orbital motion [29,30] and, therefore,
of the phasing of the GW signal. As our work is focused
on the latter phasing issue (in the presence of radiation
reaction), we consistently work in ADM-type coordinate
systems because they allow us to write down explicit
analytical expressions for the orbital phasing r�t� and
��t�. We then assume that the starting amplitude expres-
sions are first transformed from the original harmonic-
coordinates form h�;��y1; y2; _y1; _y2� to the corresponding
ADM-coordinates ones h�;��x1;x2; _x1; _x2�. Note that we
do mean expressing h�;� in terms of ADM positions and
velocities, though the use of positions and momenta a
priori looks more natural in the ADM Hamiltonian
framework. All the formulas necessary for the transfor-
mation between the two systems have been worked out, at
the 2PN order in Refs. [29,45] and in Refs. [42,43] for the
3PN. Note that the reduction to the center of mass can
equivalently be performed before or after the transforma-
tion �ya; _ya� ! �xa; _xa� [44]. Evidently, this transforma-
tion, which starts at 2PN order, does not affect the
lowest-order expressions exhibited above [Eqs. (6)].

We have explicitly computed, in ADM coordinates,
h1�;�, h2�;�, h3�;�, and h4�;�, which give PN corrections
to h�;� to 2PN order, in terms of r; �; _r; _�, in the con-
vention used to obtain h0�;�. In Appendix A, we briefly
-4
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describe the steps to get the above corrections and sketch
the structural forms of these corrections.
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FIG. 1 (color online). The 2PN accurate effective radial po-
tential Wj�u� as a function of the dimensionless radial variable
1=u � c2R=Gm, for various values of the dimensionless angu-
lar momentum j. The point marked c denotes a stable circular
orbit, while the line noted e stands for a precessing elliptical
orbit. The line with label p denotes an elliptical orbit which is
about to plunge. Note that the left end of the line p is tangent to
the effective potential and corresponds to an unstable circular
orbit. The plots are for � � 0:25.
III. DELINEATING THE STABLE ECCENTRIC
ORBITS AND THE QUASI-KEPLERIAN ONES

In the case of inspiralling circular orbits, a very im-
portant role, for the phasing of gravitational waves, is
played by the last stable (circular) orbit (LSO). In the
zeroth approximation, circular orbits above the LSO, and
in the presence of radiation reaction, can be described as
an adiabatic sequence of circular orbits. This approxima-
tion breaks down when the binary reaches the LSO, at
which point the orbital motion changes into a kind of
(relative) plunge. To describe the smooth transition be-
tween the adiabatic inspiral and the plunge, one needs to
use a formalism for the orbital motion (such as the
‘‘effective one body’’ approach [46]), which goes beyond
the usual, purely perturbative, post-Newtonian approach.

In the present paper, we study inspiralling eccentric
orbits, evolving under radiation reaction, and we use a
purely perturbative post-Newtonian approach (but one
which goes beyond the zeroth order, adiabatic approxi-
mation). Such a treatment can be valid only if we stay
sufficiently above any eccentric analog of the LSO, i.e., if
we consider eccentric orbits which are stable in the sense
of being separated by a potential barrier from any plunge
motion. The purpose of this section is to delineate, in the
plane of the parameters representing the two-dimensional
manifold of eccentric orbits, the locus where such orbits
would cease to be bona fide bound orbits to become
plunge-type ones. To do this, we need to use the non-
perturbative effective one body (EOB) formalism, be-
cause the transition between bound and plunge orbits
has a nonperturbative, strong-field origin. As the rest of
the paper will consider the conservative part of the
orbital motion at the second post-Newtonian (2PN) ap-
proximation, we shall consistently use the EOB Hamil-
tonian at the resummed 2PN level [46]. (To work at the
3PN level one should use the more complicated EOB
formalism derived in Ref. [47].)

The real (resummed 2PN) EOB Hamiltonian describ-
ing the conservative part of the orbital motion (i.e., when
neglecting radiation reaction), has the form [we recall
that � 
 �=m 
 m1m2=�m1 �m2�

2]

Hreal�R;PR; P�� � mc2
������������������������������������
1� 2��Ĥeff � 1�

q
; (8)

where

Ĥ eff 

Heff

�c2
�

��������������������������������������������������������������������
A�R�

�
1�

J 2

�2c2R2 �
P2
R

�2c2B�R�

�s
(9)

and

A�R� � 1�
2Gm

c2R
� 2�

�
Gm

c2R

�
3
: (10)
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Here R denotes the effective radial separation between the
two bodies, PR the corresponding (relative) radial mo-
mentum, and J the (relative) total angular momentum.
The total energy (including the rest mass) will be denoted
by Ereal (or simply E when no confusion with the effective
energy can arise). The total energy Ereal � Hreal is related

to the effective specific energy Êeff � Ĥeff by Ereal �

mc2
������������������������������������
1� 2��Êeff � 1�

q
. We shall not need the explicit

expression of the EOB metric component B�R� but use
only the fact that B�R�> 0. Taking into account the fact
that the radial kinetic energy term P2

R=�
2c2B�R�� in

Eq. (9) is positive, the radial motion can be qualitatively
understood in terms of the angular-momentum dependent
(effective) ‘‘radial potential’’

WJ �R� 
 A�R�
�
1�

J 2

�2c2R2

�
; (11)

which is a generalization (to the comparable mass case) of
the well-known radial potential for test-particle orbits
around a Schwarzschild black hole, namely,

W0
J �R� � �1� 2Gm=c2R�1� J 2=��2c2R2�� (12)

[which is simply the � ! 0 limit of Eq. (11)].
In Fig. 1, we present typical plots of WJ �R� on which

we mark ‘‘energy levels’’ corresponding to some eccen-
tric and circular orbits. This plot makes it clear that an
a priori bound motion (i.e., with total energy Ereal <mc2,
i.e., Êeff < 1) will execute some precessing but stable
-5
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motion only if the energy level Ĥ2
eff � Ê2

eff stays above
the radial potential WJ �R� in a finite radial interval
Rmin; Rmax�. The ‘‘centrifugal barrier’’ preventing this
radial motion to plunge towards smaller separations is
on the left of Rmin. Therefore, the locus of orbits which are
on the verge of plunging corresponds to the case where the
energy-level (horizontal) line would be tangent to the top
of the potential barrier, i.e., to

dWJ �R�

dR
� 0: (13)

In the domain of interest, Eq. (13), considered for some
given J , will have two roots, say, Rp�J � and Rc�J �, with
Rp < Rc. The larger root Rc�J � defines the set of stable
circular orbits. Note, in this respect, that the smaller root
Rp�J �, which marks the ‘‘plunge’’ locus, also corre-
sponds to the locus of unstable circular orbits. Finally,
the domain in the energy-angular-momentum plane cor-
responding to bound (nonplunge) motion is restricted by
the inequalities

WJ Rc�J ��< Ê2
eff <WJ Rp�J ��; (14)

which define, when using the link (8), a corresponding
double inequality involving J and Ereal. Note that, as one
approaches the plunge boundary, i.e., for orbits close to
the orbit marked ‘‘p’’ in Fig. 1, the character of the orbital
motion starts to deviate very much from that of a usual,
perturbative, slowly precessing, quasi-Keplerian motion.
Instead, it becomes what is referred to as a ‘‘zoom-whirl’’
motion in Ref. [48], i.e., a motion which alternates be-
tween one large-excursion elliptic-Keplerian-like orbit
and several quasicircular orbits near the periastron
(which, as noted above, is close to an unstable circular
orbit). As the formalism we use in this paper to analyti-
cally represent the orbital motion assumes a quasi-
Keplerian representation (see below), we need to stay
sufficiently away from the plunge boundary to ensure
the numerical validity of such a representation. Before
coming to the issue of what one exactly means by ‘‘suffi-
ciently away,’’ let us finish describing the analytical esti-
mate of the plunge boundary, as defined by the
inequalities given in Eq. (14).

Let us analytically estimate the two crucial roots
Rp�J � and Rc�J � of Eq. (13). Using the dimensionless,
scaled variables u 
 Gm=c2R, j 
 cJ=��Gm�, the ra-
dial potential reads

W�u� � A�u��1� j2u2�; (15a)

where

A�u� � 1� 2u� 2�u3: (15b)

Equation (13), or better �W0�u�=�2j2�, reads

3u2 � u�
1

j2
� �u2

�
3

j2
� 5u2

�
� 0: (16)
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When � ! 0, Eq. (16) becomes a quadratic equation,
with the two roots

u�0 �j� 

1

6

�
1�

���������������
1�

12

j2

s �
; (17)

where the plus sign corresponds to the plunge boundary
(larger u, i.e., smaller R), while the minus sign corre-
sponds to circular orbits. An accurate (at least when j2 >
12) analytical estimate of the� deformations of the above
two roots, i.e., the roots of the quartic equation, Eq. (16),
corresponding to Rp and Rc, is obtained by inserting
expression (17) into the �-dependent terms in Eq. (16).
This yields

u��j� ’
1

6

�
1�

�������������������������������������������������������������������������
1�

12

j2
f1� ��u�0 �

23� 5j2�u�0 �
2�g

s �
:

(18)

We have verified that the analytical estimate, Eq. (18), is a
numerically accurate estimate of the two roots up�j�,
uc�j�. Inserting this result (with u� � up, u� � uc)
into Eq. (14) then yields an explicit (2PN-level) estimate
of the domain of ‘‘nonplunge’’ eccentric orbits in the
�E;J � plane. Another way to describe the plunge bound-
ary in the �E;J � plane, which does not need to assume
that j2 > 12, is to give a parametric representation of this
boundary in terms of the parameter u in the form
E � E�u�;J � J �u�. This is simply obtained by solving

Eq. (16) for j, which gives j�u� �
��������������������
1� 3�u2

p
=��������������������������������������

u�1� 3u� 5�u3�
p

. One then obtains E � E�u� by sub-
stituting for J by j�u��Gm=c in Eqs. (8) and (9).

Having discussed the location of the plunge
boundary, let us now discuss the issue of how far from
the boundary we need to stay for allowing us to rightfully
use the analytical quasi-Keplerian representation of
Refs. [29,30] [see Eqs. (26) below]. As this representation
assumes, among other things, that the orbits are slowly
precessing, we need to set an upper limit on the rate of
periastron precession. (This will then, de facto, eliminate
the possibility of whirl-zoom orbits, which contain, dur-
ing part of their orbital period, a rapidly precessing
quasicircular motion.) To see more precisely what upper
limit we should set on periastron precession, let us go
back to the EOB representation of the motion. From
previous work on the 2PN-accurate EOB dynamics [46],
we know that the comparable mass case (�� 0:25) is
rather close to the test mass one (� ! 0), yielding geo-
desic motion in a Schwarzschild spacetime. Therefore, let
us consider the domain of parameter space for which
periastron precession around a Schwarzschild black
hole is well described by a slowly precessing, quasi-
Keplerian motion. For this, we consider the exact for-
mula, given by Eq. (A8) in Appendix A of Ref. [29],
which gives the angle of return to the periastron for a
test particle moving in Schwarzschild spacetime. It can
-6
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be easily checked that, for the elliptical orbits (the eccen-
tricity parameter et < 1) we are interested in, the term
whose expansion is most slowly convergent is the prefac-
tor 1� �12=j2���1=4 in Eq. (A8) of Ref. [29]. We must
therefore impose 12=j2 � 1 to have a slowly precessing,
quasi-Keplerian motion. When this inequality is satisfied
(together with 0 � et < 1), we expect that the 2PN-
accurate expressions for n � 2"=T, T being the radial
orbital period, and e2t in terms of E and J , as derived in
Refs. [29,30], to be numerically accurate. In terms of
dimensionless nonrelativistic energy per unit reduced
mass E 
 �E �mc2�=�c2 and j, defined earlier as
cJ=��Gm�, the expressions for n and e2t read [49]

$ 

Gmn

c3
� ��2E�3=2

�
1�

1

8
�15� ����2E�

�
��2E�2

128
�555� 30�� 11�2�

�
3

2
�5� 2��

��2E�3=2

j

�
; (19a)

e2t � 1� 2Ej2 � Ef4�1� ��

��17� 7��Ej2g �
�
2�2� �� 5�2�E2

��17� 11��
E

j2
� �112� 47�� 16�2�E3j2

�3�5� 2���1� 2Ej2�
��2E�3=2

j

�
: (19b)

Using the above expressions, one can approximately ex-
press 12=j2 in terms of $ and et and define

% 

12

j2
� 12

$2=3

�1� e2t �
: (20)

We can now specify what ‘‘small’’ means in terms of % to
ensure a decent convergence of the crucial factor �1�
%��1=4 entering the periastron precession expression. A
minimal requirement would be to impose % < 1

4 . Indeed,
when % � 1

4 the 2PN-accurate expression for the
periastron-advance parameter k0 
 �1� %��1=4 � 1
(which yields the periastron advance of nearly circular
orbits), namely, k0 � �%=4� � �5%2=32�, gives the exact
value to an accuracy �3%. Choosing such a threshold,
% < 1

4 , for staying sufficiently away from the plunge
boundary leads to the following constraint on the parame-
ters $ and et:

$

�1� e2t �3=2
�

�
%
12

�
3=2

< 3:0� 10�3: (21)

Later, when we evolve orbital elements and gravita-
tional waveforms, we make sure that the eccentric orbits
we study lie inside this domain, defined by the above
inequality. Let us emphasize that this restriction is due to
our use of, in the next section, the generalized quasi-
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Keplerian representation, given by Eqs. (28)–(30). We
could go beyond the limit, given by Eq. (21), by using,
instead of the generalized quasi-Keplerian representa-
tion, the exact Schwarzschild-like motion (analytically
expressible in terms of rather simple quadratures) in the
EOB metric. This will be tackled in the near future.
IV. A METHOD OF VARIATION OF CONSTANTS

In this section, we introduce a version of the general
Lagrange method of variation of arbitrary constants,
which was employed to compute, within general relativ-
ity, the orbital evolution of the Hulse-Taylor binary pulsar
[36,37]. The method begins by splitting the relative ac-
celeration of the compact binary A into two parts, an
integrable leading part A0 and a perturbation part A0,
as

A � A0 �A0: (22)

In this work, we work at 2.5PN accuracy and accordingly
choose A0 to be the acceleration at 2PN order and A0 to
be the c�5 (leading) contribution to radiation reaction. It
will, however, be clear that our method is general and can
be applied, for instance, to a 3.5PN-accurate calculation,
where A0 would be the conservative part of the 3PN
dynamics and A0 the O�c�5� �O�c�7� radiation reac-
tion. The method first constructs the solution to the ‘‘un-
perturbed’’ system, defined by

_x � v; (23a)

_v � A0�x; v�: (23b)

The solution to the exact system

_x � v; (24a)

_v � A�x; v�; (24b)

is then obtained by varying the constants in the generic
solutions of the unperturbed system, given by Eqs. (23).
The method assumes (as is true for Aconservative

2PN or
Aconservative

3PN ) that the unperturbed system admits suffi-
ciently many integrals of motion to be integrable. For
instance, if we work with A0 � A2PN, we have four first
integrals: the 2PN accurate energy and 2PN accurate
angular momentum of the binary. We denote these quan-
tities, written in the 2PN accurate center-of-mass frame,
as c1 and ci2:

c1 � E�x1;x2; v1; v2�j2PN CM; (25a)

ci2 � J i�x1;x2; v1; v2�j2PN CM; (25b)

with corresponding 3PN definitions of c1 and ci2, if we
were working with A0 � Aconservative

3PN .
-7
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The vectorial structure of ci2 indicates that the unper-
turbed motion takes place in a plane. The problem is
restricted to a plane even in the presence of radiation
reaction [36]. We may therefore introduce polar coordi-
nates in the plane of the orbit r and � such that x �
ir cos�� jr sin� with, say, i � p, j � q cosi�N sini
(see above). The functional form for the solution to the
unperturbed equations of motion, following Refs. [29,36],
may be expressed as

r � S�l; c1; c2�; _r � n
@S
@l

�l; c1; c2�; (26a)

� � (�W�l; c1; c2�;

_� � �1� k�n� n
@W
@l

�l; c1; c2�; (26b)

where (1 and l are two basic angles, which are 2" peri-
odic and c2 � jci2j. The functions S�l� and W�l� and
therefore @S

@l �l� and @W
@l �l� are periodic in l with a period

of 2". In the above equations, n denotes the unperturbed
‘‘mean motion,’’ given by n � 2"

P , P being the radial
(periastron to periastron) period, while k � #$=2",
#$ being the advance of the periastron in the time
interval P. The explicit 2PN accurate expressions for P
and k in terms of c1 and c2 are given in Ref. [29]. The
corresponding 3PN accurate ones are given in Ref. [42].
The angles l and ( satisfy, still for the unperturbed
system, _l � n and _( � �1� k�n, which integrate to

l � n�t� t0� � cl; (27a)

( � �1� k�n�t� t0� � c(; (27b)

where t0 is some initial instant, and the constants cl and
c( are the corresponding values for l and (. Finally, the
unperturbed solution depends on four integration con-
stants: c1, c2, cl, and c(.

At the 2PN order, one can write down explicit expres-
sions for the functions S�l� and W�l�. Indeed, the gener-
alized quasi-Keplerian representation [29,30] yields:

S�l; c1; c2� � ar�1� er cosu�; (28a)

W�l; c1; c2� � �1� k��v� l� �
f�
c4

sin2v

�
g�
c4

sin3v; (28b)

where v and u are some 2PN accurate true and eccentric
anomalies, which must, in Eqs. (28), be expressed as
functions of l, c1, and c2, say, as v � V �l; c1; c2� �
VU�l; c1; c2�� and u � U�l; c1; c2�. In the above equa-
tions, ar and er are some 2PN accurate semimajor axis
and radial eccentricity, while f� and g� are certain
1We denote by ( the variable denoted by m in Ref. [36]. In
most current literature including this paper, m denotes the total
mass of the binary. Also note that the variable k here is related
to the k variable in Ref. [31], say, kGI by k � kGI=c

2.
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functions, given in terms of c1 and c2. [To avoid introduc-
ing new notation, the eccentric anomaly is denoted by u
following standard convention. It should not be confused
with u � Gm=c2R employed in Sec. III. A similar com-
ment applies to the function v below in the quasi-
Keplerian representation and the magnitude of the rela-
tive velocity v.] The definitions of 2PN accurate functions
u � U�l; c1; c2� and v � V�u� are available in
Refs. [29,30]. First, the function v 
 V�u� is defined by

v � V�u� 
 2 arctan
��

1� e�
1� e�

�
1=2

tan
u
2

�
: (29)

Second, the function u � U�l� is defined by inverting the
following ‘‘Kepler equation’’ l � l�u�:

l � u� et sinu�
ft
c4

sinV�u� �
gt
c4

V�u� � u�: (30)

Then the function v � V �l� is obtained by inserting u �
U�l� in v � V�u�, i.e., V �l� 
 VU�l��. Here et and e�
are some time and angular eccentricity and ft and gt are
certain functions of c1 and c2, appearing at the 2PN order.
In our computations, we use the following exact relation
for v� u, which is also periodic in u:

v� u � 2tan�1

� -� sinu

1� -� cosu

�
; (31)

where -� � �1�
���������������
1� e2�

q
�=e�. We note that the exten-

sion of such a generalized quasi-Keplerian representation
to the 3PN order is easily possible when working in
ADM-type coordinates.

Let us now turn to use the explicit unperturbed solu-
tion, Eqs. (26) and (27), for the construction of the
general solution of the perturbed system, Eqs. (24).
This is done by keeping exactly the same functional
form for r, _r, �, and _�, as functions of l and (,
Eqs. (26), i.e., by writing

r � S�l; c1; c2�; _r � n
@S
@l

�l; c1; c2�; (32a)

� � (�W�l; c1; c2�;

_� � �1� k�n� n
@W
@l

�l; c1; c2�; (32b)

but by allowing temporal variation in c1 � c1�t� and c2 �
c2�t� [with corresponding temporal variation in n �
n�c1; c2� and k � k�c1; c2�] and by modifying the unper-
turbed expressions, given by Eqs. (27), for the temporal
variation of the basic angles l and ( entering Eqs. (32)
into the new expressions:

l 

Z t

t0
ndt� cl�t�; (33a)

( 

Z t

t0
�1� k�ndt� c(�t�; (33b)
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involving two new evolving quantities cl�t� and c(�t�. In
other words, we seek solutions of the exact system,
Eqs. (24), in the form given by Eqs. (32) and (33) with
four ‘‘varying constants’’ c1�t�, c2�t�, cl�t�, and c(�t�. The
four variables fc1; c2; cl; c(g replace the original four
dynamical variables r, _r, �, and _�. It can be verified
that the alternate set fc1; c2; cl; c(g satisfies, like the origi-
nal phase-space variables, first order evolution equations
[36,37]. These evolution equations have a rather simple
functional form, namely,

dc.
dt

� F.�l; c-�; .;- � 1; 2; l; (; (34)

where the right-hand side is linear in the perturbing
acceleration A0. Note the presence of the sole angle l
(apart from the implicit time dependence of c-) on the
right-hand side of Eqs. (34). The explicit expressions for
these evolution equations were derived in Ref. [37], which
in our notation read

dc1
dt

�
@c1�x; v�
@vi

A0i; (35a)

dc2
dt

�
@c2�x; v�
@vj

A0j; (35b)

dcl
dt

� �

�
@S
@l

�
�1
�
@S
@c1

dc1
dt

�
@S
@c2

dc2
dt

�
; (35c)

dc(
dt

� �
@W
@l

dcl
dt

�
@W
@c1

dc1
dt

�
@W
@c2

dc2
dt

: (35d)

The evolution equations for c1 and c2 clearly arise from
the fact that c1 and c2 were defined as some first integrals
in phase space, say, Eqs. (25). As shown in Ref. [37], there
is an alternative expression for dcl=dt, which reads

dcl
dt

�

�
@Q
@l

�
�1
�
A0 � n�

@Q
@c1

dc1
dt

�
@Q
@c2

dc2
dt

�
; (36)

where Q2�l; c1; c2� � _r2S�l; c1; c2�; c1; c2�, and @Q=@l is
defined by

@Q
@l

�
P
4"

@Q2

@r
: (37)

Both expressions, Eqs. (35c) and (36), involve formal
delicate limits of the 0=0 form, for some (different)
values of l. Taken together, they prove that these limits
are well defined and yield for dcl=dt an everywhere
regular function of l. Anyway, the algebraic manipulation
of the explicit forms of both Eqs. (35c) and (36) lead to
well-defined expressions [for example, in the case of
Eq. (35c), the problematic sinu factor in @S=@l, see
Eq. (50a) below, nicely simplifies with a sinu factor
present in the term within parenthesis on the right-hand
side of Eq. (35c)].
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The definition of l given by l �
R
t
t0
nca�t��dt� cl�t� is

equivalent to the differential form, dl=dt � n�
�dcl=dt� � n� Fl�l; ca�; a � 1; 2, which allows us to
define a set of differential equations for c. as functions
of l similar to Eqs. (34) for c. as functions of t. The exact
form of the differential equations for c.�l� reads

dc.
dl

�
F.�l; ca�

n�ca� � Fl�l; ca�
; (38)

where ca, a � 1; 2 stands for c1 and c2. Neglecting terms
quadratic in F., i.e., quadratic in the perturbation A0

[e.g., neglecting O�c�10� terms in our application], we can
simplify the system above to

dc.
dl

’
1

n�ca�
F.�l; ca� 
 G.�l; ca�; . � 1; 2; l; (;

a � 1; 2: (39)

From here onward, we will neglect these O�c�10� terms in
the evolution equations for c.�l�, i.e., work with the
simplified system, namely, Eq. (39). At this stage, it is
crucial to note not only that the right-hand side of
Eq. (39) is a function of c1, c2 and the sole angle l (and
not of (), but that it is a periodic function of l. This
periodicity, together with the slow [G. / F. / A0 �
O�c�5�] evolution of the c.’s, implies that the evolution
of c.�l� contains both ‘‘slow’’ (radiation-reaction time
scale) secular drift and ‘‘fast’’ (orbital time scale) peri-
odic oscillations. For the purpose of phasing, to model the
combination of slow drift and the fast oscillations present
in c., we introduce a two-scale decomposition for c.�l� in
the following manner:

c.�l� � 'c.�l� � ~c.�l�; (40)

where the first term 'c.�l� represents a slow drift (which
can ultimately lead to large changes in the constants c.)
and ~c.�l� represents fast oscillations [which will stay
always small, i.e., of order O�G.� � O�c�5�]. This is
proved by first decomposing the periodic functions
G.�l� (considered for fixed values of the other arguments
ca) into its average part and its oscillatory part:

'G.�ca� 

1

2"

Z 2"

0
dlG�l; ca�; (41a)

~G.�l; ca� 
 G.�l; ca� � 'G.�ca�: (41b)

Note that, by definition, the oscillatory part ~G.�l� is a
periodic function with zero average over l. Then assum-
ing that ~c. in Eq. (40) is always small [~c. � O�G.� �
O�c�5�], one can expand the right-hand side of the exact
evolution system, given by Eqs. (39), as

d 'c.
dl

�
d~c.
dl

� G.�l; 'ca � ~ca� � G.�l; 'ca� �O�G2
.�

� 'G.� 'ca� � ~G.�l; 'ca� �O�G2
.�: (42)
-9
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We can then solve, modulo O�G2
.�, the evolution equa-

tion (42) by defining 'c.�l� as a solution of the ‘‘averaged
system’’

d 'c.
dl

� 'G.� 'ca� (43)

and by defining ~c.�l� as a solution of the ‘‘oscillatory
part’’ of the system

d~c.
dl

� ~G.�l; 'ca�: (44)

During one orbital period (0 � l � 2") the quantities 'ca
on the right-hand side of Eq. (44) change only by O�G.�.
Therefore, by neglecting again terms of order O�G2

.� �
O�c�10� in the evolution of ~c., we can further define ~c.�l�
as the unique zero-average solution of Eq. (44), consid-
ered for fixed values of 'ca, i.e.,

~c .�l� �
�Z

dl ~G.�l; 'ca�
�
'ca� 'ca�l�

�
Z dl

n
~F.�l; 'ca�: (45)

The indefinite integral in Eq. (45) is defined as the unique
zero-average periodic primitive of the zero-average (pe-
riodic) function ~G.�l�. During that integration, the argu-
ments 'ca are kept fixed, and, after the integration, they
are replaced by the slowly drifting solution of the aver-
aged system, given by Eqs. (43). Note that Eq. (44) yields
~c. � O�G.�, which was assumed above, thereby verify-
ing the consistency of the (approximate) two-scale inte-
gration method used here.

As a further check of the consistency of the two-scale
method, let us sketch what would be the effect of the
inclusion of the above neglected second-order terms
O�G2

.� � �1=c5�G. � 1=c10 in Eqs. (39)–(45). These
second-order terms would yield separate corrections on
the right-hand side of the evolution equations (43) and
(44). The correction on the right-hand side of Eq. (43)
would be a slow-varying average of second-order terms
so that Eq. (43) would read

d 'c.
dl

� 'G.� 'ca� � 'G.�2�� 'ca� � � � � ; (46)

with 'G.�2� � 1=c10. The correction on the right-hand side
would be the zero-average, fast-varying part of second-
order terms, so that Eq. (44) would read

d~c.
dl

� ~G.�l; 'ca� � ~G.�2��l; 'ca� � � � � ; (47)

with ~G.�2� � 1=c10. In Eqs. (46) and (47) above, the
ellipsis represent the effect of terms cubic and higher in
G. This structure shows clearly that the separation be-
tween the two scales remains valid on very long time
scales (e.g., the entire evolution time of the system, for-
mally of order l� c�5). Second-order (and higher-order)
effects cause only fractionally small O�1=c5� separate
corrections to the evolutions of 'c. and ~c..
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We are now in a position to apply the above described
method of variation of arbitrary constants, which gave us
the evolution equations for 'c. and ~c., to GW phasing. We
use 2PN accurate expressions for the dynamical variables
r, _r, �, and _� entering the expressions for h� and h�,
given by Eqs. (6). To do the phasing, we solve the evolu-
tion equations for fc1; c2; cl; c(g, given by Eqs. (39), on
the 2PN accurate orbital dynamics, given in Eqs. (26).
This leads to an evolution system, given by Eqs. (43) and
(44), in which the right-hand side contains terms of
order O�c�5� � 1�O�c�2� �O�c�4�� � O�c�5� �
O�c�7� �O�c�9�. In the next section, as a first step, we
restrict our attention to the leading order contributions to
'G. and ~G., which define the evolution of f 'c.; ~c.g under

gravitational radiation reaction to O�c�5� order. We then
impose these variations, via Eqs. (32) and (33), onto h�
and h�, given by Eqs. (6). This will allow us to obtain
gravitational-wave polarizations, which are Newtonian
accurate in their amplitudes and 2.5PN accurate in orbital
dynamics. We name the above procedure 2.5PN accurate
phasing of gravitational waves. Since ~G.’s create only
periodic 2.5PN corrections to the dynamics, in this pa-
per, we will not explore its higher-PN corrections.
However, in a later section, we will present the conse-
quences of considering PN corrections to 'G. by comput-
ing O�c�9� contributions to relevant d 'c.=dt. This is
required as 'G. directly contributes to the highly impor-
tant adiabatic evolution of h� and h�.

Up to now we have assumed, for concreteness, that the
two constants c1 and c2 were the energy and the angular
momentum, respectively. However, any functions of these
conserved quantities can do as well. In view of our use of
the generalized quasi-Keplerian representation to de-
scribe the orbital dynamics, it is convenient to follow
Ref. [31] and to use as c1 the mean motion n and as c2
the time eccentricity et. This can be done by employing
the 2PN accurate expressions for n and et in terms of E
and J (or rather E and j), derived in Refs. [29,30]. First,
this will require us to express 2PN accurate orbital dy-
namics in terms of l, n, and et. Second, using n and et
instead of E and J as c1 and c2, we need to derive the
evolution equations for dn=dt, det=dt, dcl=dt, and dc(=dt
in terms of l, n, and et. This will follow straightforwardly
from Eqs. (35). Using these expressions, the evolution
equations, namely, Eqs. (43) and (44), for f 'n; 'et; 'cl; 'c(;
~n; ~et; ~cl; ~c(g will be obtained in terms of l, n,
and et.

As mentioned earlier, we restrict in this paper the
conservative dynamics to the 2PN order. Below, we
present the 2PN accurate orbital dynamics, given by
Eqs. (32), explicitly in terms of �l; n; et�. This straightfor-
ward computation employs explicit expressions for the
orbital elements of generalized quasi-Keplerian represen-
tation, in terms of E and j available in Refs. [29,30]. The
relations we need are
-10
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ar�n; et� �
�
Gm

n2

�
1=3

�
1�

$2=3

3
�9� �� �

$4=3

72

�
72� 75�� 8�2 �

1

�1� e2t �
1=2

�360� 144��

�
1

�1� e2t �
�306� 198��

��
; (48a)

er�n; et� � et

�

1�
$2=3

2
�8� 3�� �

$4=3

24�1� e2t �3=2

��
��288� 242�� 21�2�e2t � 390� 308�� 21�2

� ��������������
1� e2t

q

��180� 72���1� e2t �
��
; (48b)

e��n; et� � et

�

1� $2=3�4� �� �
$4=3

96�1� e2t �3=2

��
��1152� 656�� 41�2�e2t � 1968� 1088�� 4�2

� ��������������
1� e2t

q

��720� 288���1� e2t �
��
; (48c)

k�n; et� �
3$2=3

�1� e2t �
�

$4=3

4�1� e2t �
2 f�51� 26��e2t � �78� 28��g; (48d)

ft�n; et� � �
$4=3c4

8
��������������
1� e2t

p �4� ���et; (48e)

gt�n; et� �
3$4=3c4

2
��������������
1� e2t

p �5� 2��; (48f)

f��n; et� �
$4=3c4

8�1� e2t �2
�1� 3���e2t ; (48g)

g��n; et� � �
3$4=3c4

32�1� e2t �2
�2e3t ; (48h)

where $ 
 Gmn=c3. We note that the generalized quasi-Keplerian orbital elements, given in terms of E and j in
Refs. [29,30,49], can easily be expressed in n and et using the following 2PN accurate relations for �2E and �2Ej2:

�2E � $2=3
�
1�

$2=3

12
15� �� �

$4=3

24

�
�15� 15�� �2� �

1��������������
1� e2t

p �120� 48��
��
; (49a)

�2Ej2 � �1� e2t �
�
1�

$2=3

4�1� e2t �
��17� 7��e2t � 9� �� �

$4=3

24�1� e2t �2
��360� 144��e2t

��������������
1� e2t

q
��225� 277�� 29�2�e4t � �210� 190�� 30�2�e2t � 189� 45�� �2�

�
: (49b)

These two relations easily follow from inverting the 2PN accurate relations for the orbital period P � 2"
n and e2t in terms

of E and j presented in Eqs. (19) above (see [29,30]).
In addition, to compute expressions for _r and _�, we use the following relations:

@S
@l

� arer sinu
@u
@l

; (50a)

@W
@l

�

��
1� k�

2f�
c4

cos2v�
3g�
c4

cos3v
�
@v
@u

@u
@l

� �1� k�
�
; (50b)

@u
@l

�

�
1� et cosu�

gt
c4

�
1

c4
�ft cosv� gt�

@v
@u

�
�1
; (50c)

@v
@u

�
�1� e2��

1=2

1� e� cosu
: (50d)

The radial motion, defined by r�l; n; et� and _r�l; n; et�, reads (both in the compact form and in 2PN-expanded form)
064028-11
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r � S�l; n; et� � ar�n; et�1� er�n; et� cosu� �
�
Gm

n2

�
1=3

�1� et cosu�
�

1�
$2=3

6�1� et cosu�
�6� 7��et cosu� 18� 2��

�
$4=3

72
�������������������
�1� e2t �

3
p

�1� et cosu�
f��72� 231�� 35�2��1� e2t �et cosu� �72� 75�

�8�2�e2t � 234� 273�� 8�2�
��������������
1� e2t

q
� 36�1� e2t ��5� 2���2� et cosu�g

�

; (51a)

_r � n
@S
@l

�l; n; et� �
�Gmn�1=3

�1� et cosu�
et sinu

�

1�
$2=3

6
�6� 7�� �

$4=3

72

1

�1� et cosu�3

�
��72� 231�� 35�2��et cosu�

3

��216� 693�� 105�2��et cosu�
2 � �324� 513�� 96�2�et cosu

��36� 9���e2t � 468� 15�� 35�2� �
36��������������
1� e2t

p �1� et cosu�2�4� et cosu��5� 2���
��
: (51b)

In the above equation, the eccentric anomaly u � U�l; n; et� is given by inverting the 2PN accurate Kepler equation,
Eq. (30), connecting l and u, i.e., in explicit form

l � u� et sinu�
$4=3

8
��������������
1� e2t

p 1

�1� et cosu�
fet sinu

��������������
1� e2t

q
��4� �� � 12�5� 2���u� v��1� et cosu�g: (52)

The angular motion, described in terms of � and _�, is given by

��(; l� � (�W�l�; (53a)

W�l� � v� u� et sinu�
3$2=3

�1� e2t �
fv� u� et sinug �

$4=3

32�1� e2t �5=2
1

�1� et cosu�3
�f4

��������������
1� e2t

q
�1� et cosu�

2f��102

�52��e2t � 156� 56�get cosu� ��4� ��e4t � �102� 60�� 2�2�e2t � 156� 52�� �2�

��1� e2t ��3e2t � 12��� 8��et cosu�2 � �8� 6��e2t � 8� 24���et cosu� � 12�e4t � �8� 27��e2t ��get sinu

��1� et cosu�3f48�1� e2t �2�5� 2�� � 8�51� 26��e2t � 78� 28��gu� 8�1� et cosu�3f�51� 26��e2t

�78� 28��
��������������
1� e2t

q
� �30� 12���1� 2e2t � e4t �gv�; (53b)

_� �
n

��������������
1� e2t

p
�1� et cosu�2

�
1�

$2=3

�1� e2t ��1� et cosu�
�1� ��et cosu� �4� ��e2t � 3�

�
$4=3

12

1

�1� et cosu�3

�
1

�1� e2t �
3=2

f18�1� et cosu�
2�et cosu� 2e2t � 1��5� 2��g �

1

�1� e2t �2
f��9� 19�

�14�2�e2t � 36� 2�� 8�2��et cosu�3 � ��48� 14�� 17�2�e4t � �69� 79�� 4�2�e2t � 114� 2�

�5�2��et cosu�2 � ��6� 32�� �2�e4t � �93� 19�� 16�2�e2t � 222� 50�� �2��et cosu� � 6��1� 2��e6t

��54� 28�� 20�2�e4t � �153� 61�� 2�2�e2t � 144� 48�g
��
: (54)
The explicit form of _� above follows from Eq. (32b).
In addition to the above explicit expressions, we also

need to evaluate the right-hand side of Eqs. (35a) and
(35b) and, in particular, the 2PN accurate partial deriva-
tives of n and et with respect to the relative velocity v. To
get these, one could combine Eqs. (19) with the expres-
sions for E and j in terms of relative position and velocity,
rather than in terms of position and momenta as is usual
in the ADM formalism. To the desired 2PN order, one
may either start from the ordinary Lagrangian L�x; v� in
ADM coordinates (see [45] for the explicit construction
064028
of this Lagrangian) or (simply) by inverting the basic
Hamiltonian equation v � dH=dp, to get v in terms of p.
However, in the next section, we require expressions for E
and j only to the well-known Newtonian order.
V. 2.5PN ACCURATE PHASING

Let us recall that our method is general and can be
applied, in principle, to any PN accuracy. For instance,
we could study the effect of the O�c�5� �O�c�7� radia-
tion reaction on the 3PN conservative motion. However, in
-12
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this work, we limit ourselves, for simplicity, to consider-
ing the effect of the O�c�5� radiation reaction on the 2PN
motion. Accordingly, we shall, each time it is possible,
truncate away all effects that would correspond to the
O�c�7� level or beyond. As we shall see, this approxima-
tion is probably sufficient for oscillatory effects [in the
sense of the decomposition, given in Eq. (40)], which are
the primary focus of this paper.We discuss below how our
method also justifies the usual way of deriving the secular
effects linked to the radiation reaction, and we obtain
more accurate expressions for them.

This section begins by providing inputs necessary for
computing evolution equations for the set f 'c.; ~c.g, to the
2.5PN order, where the index . � n, et, cl, and c(. As just
said, we require A0 to 2.5PN order for this purpose. The
2.5PN expressions for A0 will have to be in the ADM
gauge, as our conservative 2PN dynamics is given in the
same gauge. The expression for relative reactive accelera-
tion, to 2.5PN order, in the ADM gauge, available in
Ref. [50], reads

A0i � �
8G2m2�

15c5r3

�
�3

�
12v2 � 15 _r2 � 2

Gm
r

�
_rni

�

�
11v2 � 24 _r2 �

Gm
r

�
vi
�
; (55)
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where v2 � _r2 � r2 _�2. At this point a nice technical
simplification occurs. Though our formalism consistently
combines a 2PN-accurate, precessing motion with 2.5PN
radiation reaction, the right-hand sides of Eqs. (39) are
technically given by the product of O�c�5� reaction terms
by orbital expressions given as explicit PN expansions
O�c0� �O�c�2� �O�c�4�. Therefore, if we decide, in a
first approach, to neglect O�c�7� contributions to the
phasing, we can simplify the right-hand sides of
Eqs. (39) by keeping only the leading terms in the orbital
expressions. This formally means that it is enough to use
Newtonian-like approximations for all orbital expressions
appearing in Eqs. (39). For instance, we can simply
use r ’ �GM=n2�1=3�1� et cosu�, n ’ ��2EDS�

3=2=Gm ’

�2Gm=r� v2��3=2=Gm, etc., in Eqs. (39). Note, however,
that this does not at all mean that we are approximating
the orbital motion as being a nonprecessing Newtonian
ellipse. In all expressions where they are needed, we must
retain the full PN expansion. For instance, in the contri-
bution (, given by Eq. (65b) (see below), to � � (�
W�l�, we must keep the 2PN accuracy for the precession
rate n�1� k� and augment it by the effect of the time
variation of n�t� and kn�t�; et�t��, as discussed there.

Finally, the leading evolution equations for fdn=dl;
det=dl; dcl=dl; dc(=dlg in terms of u�l; n; et�; n; and et,
follow as
dn
dl

� �
8$5=3n�

5

�
4

33 �
21

34 �
4� 30e2t

35
�

54�1� e2t �

36
�

45�1� e2t �
2

37

�
�O

�
1

c7

�
; (56a)

det
dl

�
8$5=3��1� e2t �

15et

�
17

33 �
46

34 �
20� 6e2t

35
�

54�1� e2t �

36
�

45�1� e2t �
2

37

�
�O

�
1

c7

�
; (56b)

dcl
dl

�
8$5=3� sinu

15et

�
8
e2t
33 �

17� 43e2t
34 �

29� 22e2t � 51e4t
35

�
9�1� e2t �

2

36
�

45�1� e2t �
3

37

�
�O

�
1

c7

�
; (56c)

dc(
dl

�
8$5=3� sinu

15et

��
�

17

34 �
29� 9e2t

35
�

9�1� e2t �

36
�

45�1� e2t �
2

37

� �����������������
�1� e2t �

q
� 8

e2t
33 �

17� 43e2t
34 �

29� 22e2t � 51e4t
35

�
9�1� e2t �2

36
�

45�1� e2t �3

37

�
�O

�
1

c7

�
; (56d)
where 3 
 �1� et cosu�; $ 
 Gmn=c3 and u �
u�l; n; et�. We are in a position to explore the secular
and periodic variations of fc.g to O�c�5�, which will be
done in the next two subsections.

A. Secular Variations

Using the above set of equations with Eqs. (43) and
(44), we obtain the differential equations for f 'c.; ~c.g,
where the index . � n; et; cl; c(. Let us first consider
the secular variations of c. given by Eqs. (43). One re-
mark is that, after using an l-variable formulation to
separate the secular variations from the oscillatory
ones, we can, at the end, reexpress the secular result,
Eqs. (43), in terms of the original time variable t. This
leads to
d 'c.
dt

� 'F.� 'ca�; (57)

where 'F. is the l average of the right-hand side of the t
variation of the c.’s; see Eq. (34): 'F.� 'ca� � �2"��1 �R

2"
0 dlF.�l; 'ca�. Among the secular variations, let us first

discuss the secular variation of cl and c(. The ‘‘source
term’’ for the secular variations of cl and c( is the l
average of Fl or F(, i.e., modulo a (secular) factor n� 'ca�,
the l averages of Gl � Fl=n, or G( � F(=n, i.e., the l
average of the right-hand sides of Eqs. (56c) and (56d). A
look at the right-hand sides shows that, being of the form
sinuf�cosu�, they are odd under u ! �u, so that their
average over dl ’ �1� et cosu�du exactly vanishes:
-13
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'Gl � 0 � 'G(. In fact, this remarkable finding follows
from the time-odd character of the perturbing force A0

and therefore would also hold if we considered the radia-
tion reaction to the accuracy O�c�5� �O�c�7� �
O�c�8� �O�c�9�. [We stop at c�9 order because of the
conceptual subtleties arising in the meaning of radiation
reaction at c�10 order, which is the first order where non-
linear effects linked to the leading O�c�5� radiation
reaction enter.] Note that the O�c�8� contribution to ra-
diation reaction comes from the tail contributions, which
in its exact form is given by an integral over the past [51].
This correction is time-reversal asymmetric without
being simply time-reversal antisymmetric. However,
when approximating that integral as a function of the
instantaneous state, it becomes a time-reversal antisym-
metric function of x and v [52]. Indeed, c1 and c2 being
even under time reversal, the partial derivatives @c1=@vi,
@c2=@v

i in Eqs. (35) are time odd. When A0 is time odd,
Eqs. (35) then imply that dc1=dt and dc2=dt are time
even. Then in Eq. (35c), @S=@l is time odd (because r is
even, but l is odd), @S=@ca is even, and dca=dt is time
even, so that dcl=dt ends up being time odd. The same
conclusion is found to hold for dc(=dt, thereby ensuring
the absence of secular variations for both cl and c(:

d 'cl
dt

� 0; 'cl�t� � 'cl�0�; (58a)

d 'c(
dt

� 0; 'c(�t� � 'c(�0�: (58b)

Turning now to the secular variations of 'n and 'et,
Eq. (57), we note that they reduce to the usual adiabatic
estimate of the secular variation of constants, namely,

d 'ca
dt

�


@ca�x; v�
@vi

A0i
�
l
; (59)

where h il denotes an average over an (instantaneous)
orbital period. If we were using as c1 and c2 the system’s
dimensionless energy E and angular momentum j,
Eq. (59) is the usual way of estimating the secular change
of E and j under the influence of a perturbing acceleration
A0. Applying Eq. (59) to the case where c1 � n and c2 �
et is easily seen to lead simply to a coupled differential
system for 'n�t�, 'et�t�, which is strictly equivalent [under
the map 'n � 'n�E; j�, 'et � 'et�E; j�] to the just mentioned
secular evolution system for E and j. The l average of the
right-hand side of Eqs. (56a) and (56b) in the leading
O�c�5� approximation, as mentioned earlier, only leads to
the leading terms in the secular evolution of 'n and 'et.
Since the right-hand sides of Eqs. (56a) and (56b) are
expressed in terms of u, it is convenient to do the orbital
average by expressing it as an integral over using u, using
dl ’ �1� et cosu�du. The resulting definite integrals may
be easily computed, using [53], which gives
1

2"

Z 2"

0

du

�1� et cosu�N�1 �
1

�1� e2t ��N�1�=2
PN

�
1��������������

1� e2t
p �

;

(60)
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where PN is the Legendre polynomial. Using Eq. (60) in
Eqs. (56a) and (56b), we obtain leading O�c�5� correc-
tions to d 'n=dl and d 'et=dl. From these expressions, using
dl � 'ndt, we obtain d 'n=dt and d 'et=dt, which read

d 'n
dt

�
�Gm�5=3n11=3�

5c5�1� e2t �
7=2

f96� 292e2t � 37e4t g �O

�
1

c7

�
;

(61a)

d 'et
dt

� �
�Gmn�5=3n�et
15c5�1� e2t �

5=2
f304� 121e2t g �O

�
1

c7

�
: (61b)

These results are equivalent to the old results of Peters [4]
based on balance argument between far-zone fluxes and
local radiation damping. In the next section, we will
present 2PN accurate expressions, providing corrections
to O�c�10� for d 'n=dt and d 'et=dt.

Let us finally note that formally one can analytically
solve the coupled evolution system by successive approxi-
mations, reducing it to simple quadratures. For instance,
at the leading order where one keeps only the O�c�5�
contributions, one can first eliminate t by dividing d 'n=dt
by d 'et=dt, thereby obtaining an equation of the form
d ln 'n � f0� 'et�d 'et. Integration of this equation yields

'n� 'et� � ni
e18=19i �304� 121e2i �

1305=2299

�1� e2i �
3=2

�
�1� e2t �3=2

e18=19t �304� 121e2t �
1305=2299

; (62)

where ei is the value of et when n � ni, a result first
obtained by Peters in Ref. [4].

Inserting Eq. (62) into the leading evolution equation
for 'et then leads to an evolution of the form d 'et=dt �
g0� 'et�, which can be done by quadrature: t �R
d 'etg�1

0 � 'et� � constant. We can then insert back the
leading result, Eq. (62), into the leading correction terms
of the evolution equation for d ln 'n=d 'et to get again a
decoupled equation of the form d ln 'n � f2� 'et�d 'et, which
can be integrated. Continuing in this way would give the
function 'n� 'et� in the form of an expansion, which would
lead to an explicit decoupled equation for the temporal
evolution of 'et: d 'et=dt � g� 'et� � g0 � c�2g2, which can
again be solved by quadrature. This procedure may easily
be extended to O�c�9� order. At the leading 2.5PN order,
we have checked that the temporal evolution for � 'n; 'et�,
obtained by solving coupled differential equations,
Eq. (61), is in excellent agreement with those given by
the above mentioned procedure.

B. Periodic Variations

Let us turn to the differential equations, which give at
O�c�5� order orbital period oscillations to our dynamical
variables. They read
-14
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d~n
dl

� �
8$5=3n�

5

�
4

33 �
21

34 �
4� 30e2t

35
�

54�1� e2t �

36
�

45�1� e2t �2

37

�
�

$5=3n�

5�1� e2t �
7=2

f96� 292e2t � 37e4t g; (63a)

d~et
dl

�
8$5=3��1� e2t �

15et

�
17

33 �
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34 �
20� 6e2t

35
�

54�1� e2t �

36
�

45�1� e2t �
2

37

�
�

$5=3�et
15�1� e2t �5=2

f304� 121e2t g; (63b)

d~cl
dl

�
8$5=3� sinu

15et

�
8
e2t
33 �

17� 43e2t
34 �

29� 22e2t � 51e4t
35

�
9�1� e2t �2

36
�

45�1� e2t �3

37

�
; (63c)

d~c(
dl

�
8$5=3� sinu

15et

��
�

17

34 �
29� 9e2t

35
�

9�1� e2t �

36
�

45�1� e2t �2

37

� �����������������
�1� e2t �

q
� 8

e2t
33 �

17� 43e2t
34 �

29� 22e2t � 51e4t
35
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9�1� e2t �2

36
�

45�1� e2t �3

37

�
; (63d)

where n and et, on the right-hand side of these equations, again stand for 'n and 'et. Here the right-hand sides of Eqs. are
zero-average oscillatory functions of l. [The right-hand sides for Eqs. (63c) and (63d) are in fact identical to the ones of
Eqs. (56c) and (56d), in view of our previous result 'Gl � 'G( � 0, except for the fact that they are expressions in terms of
'n and 'et, instead of n and et.]

One can analytically integrate Eqs. (63) to get ~n, ~et, ~cl, ~c( as zero-average oscillatory functions of l. We find, when
expressed in terms of u,

~n �
$5=3net� sinu

15�1� e2t �3

�
602� 673e2t

3
�

314� 203e2t � 111e4t
32 �

122� 196e2t � 26e4t � 48e6t
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162�1� e2t �3

34

�
216�1� e2t �

4
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5�1� e2t �7=2
�96� 292e2t � 37e4t �

�
2tan�1

�
-t sinu

1� -t cosu

�
� et sinu

�
; (64a)
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45�1� e2t �2
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32 �

70� 380e2t � 550e4t � 240e6t
33 �

162�1� e2t �3

34

�
216�1� e2t �

4

35

�
�

$5=3et�

15�1� e2t �5=2
�304� 121e2t �

�
2tan�1

�
-t sinu

1� -t cosu

�
� et sinu

�
; (64b)

~cl �
2$5=3�

45e2t

�
�96

e2t
3
�

102� 258e2t
32 �

116� 88e2t � 204e4t
33 �

27�1� e2t �2

34 �
108�1� e2t �3

35
�

1

2�1� e2t �
3=2

�134

�281e2t � 315e4t �
�
; (64c)

~c( �
2$5=3�

45e2t

��
102

1

32 �
116� 36e2t

33 �
27�1� e2t �

34 �
108�1� e2t �2

35

� ��������������
1� e2t

q
� 96

e2t
3
�

102� 258e2t
32

�
116� 88e2t � 204e4t

33 �
27�1� e2t �2

34 �
108�1� e2t �3

35
�

1

2�1� e2t �
9=2

��134� 281e2t � 315e4t ��1� e2t �
3

��134� 175e2t � 45e4t ��1� e2t �
5=2

�
; (64d)
where -t � �1�
��������������
1� e2t

p
�=et. Finally, let us consider the

way the previous results feed in to the basic angles l and (
entering our perturbed solution Eq. (24). From the defi-
nitions for l�t� and (�t�, as given in Eqs. (33), we see that
we can also split these angles in ‘‘secular’’ pieces, say 'l, '(
and ‘‘oscillatory’’ ones ~l, ~(, as

l�t� � 'l�t� � ~ll; 'ca�t��; (65a)

(�t� � '(�t� � ~(l; 'ca�t��; (65b)

where
064028
'l�t� 

Z t

t0
'n�t�dt� 'cl�t�; (65c)

and

'(�t� 

Z t

t0
1� 'k�t�� 'n�t�dt� 'c(�t�: (65d)

We note, based on earlier results, that 'cl�t� � 'cl�t0� and
'c(�t� � 'c(�t0� are constants. The oscillatory contribu-
tions to l and ( are given by
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~l�l; 'ca� �
Z
dl

~n�l�
n

� ~cl�l�; (66a)

~(�l; 'ca� �
Z
dl
�
~n
n
� 'k

~n
n
� ~k

�
� ~c(�l�: (66b)

Here ~k 
 �@k=@n�~n� �@k=@et�~et denotes the oscillatory
piece in k and

R
dl~f�l� denotes the unique zero-average
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FIG. 2. The plots for 'n=ni, ~n=n, 'et, and ~et versus l=2", which
gives the number of orbital revolutions. These variations are
governed by the reactive 2.5PN equations of motion. The
periodic nature of the variations in ~n and ~et are clearly visible.
eit and eft denote initial and final values for the time eccentricity
et, while $i and $f stand for similar values of the adimensional
mean motion Gmn=c3. The plots are for � � 0:25 and the
evolution is terminated when j2 � 48.
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primitive of the zero-average periodic function of
l, ~f�l�.

To complete our study of the O�c�5� oscillatory con-
tributions to the phasing, we see from Eq. (66a) that we
need to integrate ~n=n and add it to the previous result for
~cl�l�. [Note that they appear together in the phasing
formula.] We find
~l�l; 'ca� �
$5=3�

15�1� e2t �
3

�
�602� 673e2t �3� �314� 203e2t � 111e4t � ln3� �602� 673e2t � �

122� 196e2t � 26e4t � 48e6t
3

�
81�1� e2t �3

32 �
72�1� e2t �4

33

�
�

$5=3�

5�1� e2t �
7=2

�96� 292e2t � 37e4t �
�Z �

2tan�1

�
-t sin�u�

1� -t cos�u�

�

�et sin�u�
�
3du

�
� ~cl�l�; (67)
where ~cl�l� is given by Eq. (64c) and -t � �1���������������
1� e2t

p
�=et. The explicit expression for ~( at the 2.5PN

order is simply given by Eq. (67) with ~cl�l� replaced by
the expression for ~c(�l�, given by Eq. (64d). This is so
because contributions to ~(�l� arising from the periastron-
advance constant k appear at O�c�7�. In the next subsec-
tion, we plot analytic results obtained in these subsections
and their influences on h� and h�.
C. Graphical Representation of the Results

We begin the subsection by illustrating the temporal
evolution of 'c. and ~c.. Next, we show the combined
effects of these secular and periodic variations on basic
angular variables that appear in the expressions for h�
and h�. Finally, we exhibit h� and h� evolving under
gravitational radiation reaction and point out various
features associated with post-Newtonian accurate orbital
motion. In these figures, we terminate the orbital evolu-
tion when j2 � 48. This criterion, as explained earlier, is
chosen to make sure that the orbit under investigation is a
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by the reactive 2.5PN equations of motion. The periodic nature
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FIG. 4. The plots showing scaled time derivative of l and (�
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show clearly both the secular drift and the periodic oscillations
of the plotted quantities. Similar to earlier figures, these
variations are governed by the reactive 2.5PN equations of
motion. The initial and final values of the relevant orbital
elements are marked on the plots. The plots are for � � 0:25
and ni is the initial value of the mean motion n.
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shrinking, slowly precessing ellipse. We have also taken
advantage of the ‘‘scaling’’ nature of the problem to
plot only dimensionless quantities in terms of dimension-
less variables. The conversion to familiar quanti-
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FIG. 5. The scaled h� (Newtonian in amplitude and 2.5PN in
orbital motion) plotted against orbital cycles, given by l=2".
The chirping and amplitude modulation due to periastron
precession are clearly visible in the upper panel. In the bottom
panel, we zoom into the initial stages of orbital evolution to
show the effect of the periodic orbital motion and the perias-
tron advance on the scaled h��t�. The initial and final values of
the relevant orbital elements are marked on the plots. The plots
are for � � 0:25 and the orbital inclination is i � "=3.
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ties such as orbital frequency f (in hertz) is given
by f 
 n=2" � �1=2"��c3$=Gm� � 3:2312 �
104$�M�=m�. This implies that, for a compact binary
with m � M� and $ � 10�3, the orbital frequency will
be �30 Hz.

In Figs. 2 and 3, we plot 'n=ni (where ni is the initial
value of n), ~n=n, 'et, ~et, 'cl, ~cl, 'c(, and ~c( as functions of l

2" ,
which gives evolution in terms of elapsed orbital cycles.
We clearly see an adiabatic increase (decrease) of 'n � 'et� as
well as the periodic variations of ~n and ~et. As expected,
we also observe no secular evolution for 'cl and 'c( but
clearly see periodic variations in ~cl and ~c(. In order to
illustrate the effect of the secular and periodic variations
in the above orbital variables on the basic angles l and (,
in Fig. 4 we plot scaled dl=dt and d�(� l�=dt as func-
tions of l

2" . The figure shows periodic oscillations super-
posed on the slow secular drift. Finally, in Figs. 5 and 6,
we plot scaled h� and h� as functions of l

2" . We employ
for these figures polarization amplitudes, which are
Newtonian accurate, while the orbital motion is 2.5PN
accurate. We clearly see ‘‘chirping’’ due to radiation
damping, amplitude modulation due to periastron preces-
sion, and also orbital period variations.

Using the scaling argument mentioned earlier, we note
that Figs. 2–6 may be used to illustrate the various
aspects of a compact binary inspiral from sources rele-
vant for both LIGO and LISA. For instance, if we choose
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FIG. 6. The plots for the scaled h� (Newtonian in amplitude
and 2.5PN in orbital motion) as a function of l=2", where l is
the mean anomaly. The slow chirping and amplitude modula-
tion due to periastron precession are clearly visible in the upper
panel. In the bottom panel, we zoom into the initial stages of
orbital evolution to show the effect of the periodic orbital
motion and the periastron advance on the scaled h��t�. The
initial and final values of the relevant orbital elements are
marked on the plots. The plots are for a binary consisting of
equal masses, so that � � 0:25 and the orbital inclination is
i � "=3. The orbital evolution, as in earlier cases, is termi-
nated when j2 � 48.

-17



DAMOUR, GOPAKUMAR, AND IYER PHYSICAL REVIEW D 70 064028
m � 2:8M�, the variation of $ from 2:069� 10�3 to
3:0186� 10�3 in around 227 orbital cycles corresponds
to orbital frequency variation from 150 to �217 Hz in
�8:15 s. Similarly, the choice m � 105M� corresponds to
a binary inspiral involving two supermassive black holes,
where orbital frequency increases from �4:2� 10�3 Hz
to �6:2� 10�3 Hz in �2:7 days.

Finally, we note that Figs. 2–6 were drawn mainly to
exhibit more clearly the existence of periodic variations
in orbital elements (analytically investigated for the first
time in the present paper) due to the radiation reaction.
Evidently, as these variations scale as $5=3 [see Eqs. (64)],
they become quite small if the binary is not near the
plunge boundary. Our work is important, even when the
binary is not near the LSO, as it shows, in a technically
clear manner, how to describe the exact phasing as the
sum of the usually considered adiabatic phasing (involv-
ing only secular variations) and a normally neglected
postadiabatic phasing (involving only the relatively
smaller ‘‘periodic’’ variations). More about this will be
in the conclusions below.
VI. PN ACCURATE ADIABATIC EVOLUTION
FOR �n AND �et

One of the useful results of the present work is con-
tained in Eqs. (58) and (59). Indeed, these equations
provide a clear justification for the usually considered
adiabatic approximation (in cases where one is sufficiently
away from the plunge boundary so that one can safely
neglect the additional periodic contributions and treat
orbits to be quasi-Keplerian). More precisely, we have
earlier proved that Eqs. (58) would be valid, even if we
are considering radiation reaction to the accuracy
O�c�5� �O�c�7� �O�c�8� �O�c�9�. Concerning
Eqs. (59), following its derivation again, we see that (if
we were to define ca to sufficient accuracy, by considering
the conserved quantities of the ‘‘conservative part’’ of the
dynamics) it is valid up to terms which are quadratic in
the radiation reaction, i.e., up to O�c�10�. Therefore, to
those very high accuracies, our work shows that the
secular part of the phasing [in the sense of the decom-
position, as in Eq. (40)] is essentially given by the simple
averaged result, given by Eqs. (58) and (59). Then, as
usual, we expect that the averaged losses of the mechani-
cal energy and angular momentum of the system, appear-
ing in Eqs. (59), are equal to the corresponding far-zone
(FZ) fluxes of energy and angular momentum in the form
of radiated gravitational waves.

To complete this work, let us briefly show how to
obtain, in ADM coordinates, the 2PN accurate secular
changes in 'n and 'et, equivalent to corresponding 2PN
accurate FZ fluxes of energy and angular momentum. The
differential equations for 'n and 'et are computed, follow-
ing the PN accurate calculations presented in Ref. [17].
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These computations require PN corrections to orbital
averaged expressions for the far-zone energy and
angular-momentum fluxes and PN accurate expressions
for n and et, all of these expressed in terms of orbital
energy and angular momentum. The PN accurate expres-
sions for d 'n=dt and d 'et=dt are obtained by differentiating
PN accurate expressions for n and et with respect to time
and then heuristically equating the time derivatives of
orbital energy and angular momentum to orbital averaged
expressions for the far-zone energy and angular-
momentum fluxes. For the ease of implementation, we
split 2PN accurate computations of d 'n=dt and d 'et=dt into
two parts. The first part deals with the purely ‘‘instanta-
neous’’ 2PN corrections and the second part considers the
so-called ‘‘tail’’ contributions, appearing at the 1.5PN
(reactive) order [54]. The computations to get instanta-
neous contributions begin with 2PN corrections to far-
zone fluxes, in harmonic gauge, in terms of r, _r, and v2

available in Ref. [28]. Using 2PN accurate relations con-
necting the dynamical variables in harmonic and ADM
coordinates, given by Eqs. (A1) in Appendix A, we obtain
expressions for the far-zone fluxes in ADM coordinates.
These far-zone fluxes are orbital averaged, using 2PN
accurate generalized quasi-Keplerian parametrization
for elliptical orbits, following lower PN computations
done in Ref. [17]. We then compute time derivative of
PN accurate expressions for n and et and equate resulting
time derivatives of orbital energy and angular momentum
to orbital averaged expressions for the far-zone energy
and angular-momentum fluxes, respectively, to get PN
accurate d 'n=dt and d 'et=dt in terms of E, j, m, and �.
Finally, we use Eqs. (49) to obtain the differential equa-
tions for 'n and 'et in terms of n, et, m, and �. The tail
contributions to d 'n=dt and d 'et=dt are already available,
in slightly different forms, in Ref. [17] and we only
rewrite these expressions in our n and et variables.
Adding these instantaneous and tail contributions gives
us the following 2PN accurate evolution equations for 'n
and 'et:
d 'n
dt

�
�Gmn�11=3�

G2m2c5
f _'nN � _'n1PN � _'n1:5PN � _'n2PNg; (68a)

d 'et
dt

� �
�Gmn�8=3�et

Gmc5
f _'et

N � _'et
1PN � _'et

1:5PN � _'et
2PNg;

(68b)
where _'nN, _'n1PN, _'n2PN, _'et
N, _'et

1PN, and _'et
2PN denote instan-

taneous contributions to 2PN order, while _'n1:5PN and
_'et
1:5PN stand for the tail contributions. Using 2PN accu-

rate orbital representation and far-zone energy and
angular-momentum fluxes, we have computed 2PN accu-
rate instantaneous contributions to d 'n=dt and d 'et=dt,
whose explicit forms are given by
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_'nN �

�
1

5�1� e2t �7=2
96� 292e2t � 37e4t �

�
; (69a)

_'n1PN �
$2=3

280�1� e2t �
9=2

f20368� 14784�� �219880� 159600��e2t � �197022� 141708��e4t � �11717� 8288��e6t g;

(69b)

_'n2PN �
$4=3

30240�1� e2t �11=2
f�12592864� 13677408�� 1903104�2� � �131150624� 217822752�

�61282032�2�e2t � �282065448� 453224808�� 166506060�2�e4t � �112430610� 144942210�

�64828848�2�e6t � �3523113� 3259980�� 1964256�2�e8t � 3024�96� 4268e2t � 4386e4t

�175e6t ��2�� 5�
��������������
1� e2t

q
g; (69c)

_'et
N �

�
1

15�1� e2t �5=2
304� 121e2t �

�
; (69d)

_'et
1PN �

$2=3

2520�1� e2t �
7=2

f340968� 228704�� �880632� 651252��e2t � �125361� 93184��e4t g; (69e)

_'et2PN �
$4=3

30240�1� e2t �9=2
f20621680� 28665360�� 4548096�2 � �86398044� 148804812�� 48711348�2�e2t

��69781286� 95827362�� 42810096�2�e4t � �3786543� 4344852�� 2758560�2�e6t

�1008�2672� 6963e2t � 565e4t ��2�� 5�
��������������
1� e2t

q
g; (69f)

where, as in earlier instances, n and et on the right-hand side of these equations stand for 'n and 'et.
The tail contributions to d 'n=dt and d 'et=dt, which appear at 1.5PN order, are derivable using Keplerian orbital

parameterization and tail corrections to orbital averaged expressions for the far-zone energy and angular-momentum
fluxes available in Refs. [52,55]. For the ease of presentation, we display below tail contributions to d 'n=dt and d 'e2t =dt,
rather than d 'n=dt and d 'et=dt:�

d 'n
dt

���������tail
�

384

5

�Gmn��14=3�"�

G2m2c8
5E; (70a)

�
d 'e2t
dt

���������tail
� �

256

5

�Gmn��11=3�"�

Gmc8
f�1� e2t �5E �

��������������
1� e2t

q
5Jg; (70b)

where both 5E and 5J are expressible in terms of infinite sums involving quadratic products of Bessel functions Jp�pet�
and its derivative J0p�pet�. For completeness, the explicit expressions for 5E and 5J, given in Refs. [52,55], are listed
below:

5E �
X�1

p�1

p3

4

�
Jp�pet��

2

�
1

e4t
�

1

e2t
�

1

3
� p2

�
1

e4t
�

3

e2t
� 3� e2t

��
� p

�
�

4

e3t
�

7

et
� 3et

�
Jp�pet�J

0
p�pet�

�J0p�pet��
2

�
1

e2t
� 1� p2

�
1

e2t
� 2� e2t

���
; (71a)

5J �
X�1

p�1

p2

2

��������������
1� e2t

q �
p
�
3

e2t
�

2

e4t
� 1

�
Jp�pet��2 �

�
2

e3t
�

1

et
� 2p2

�
1

e3t
�

2

et
� et

��
Jp�pet�J0p�pet�

�2p
�
1�

1

e2t

�
J0p�pet��2

�
: (71b)
We have checked that to 1PN order the above equations
are consistent with expressions for d 'ar=dt and d 'er=dt,
computed in Ref. [17]. At 2PN order, the above expres-
sions are also consistent with corrected formulas for
d 'ar=dt and d 'er=dt, available in Refs. [28,32]
064028
VII. CONCLUSION

Let us summarize what we have proposed in this paper
and point out possible extensions. We have provided a
method for analytically constructing high-accuracy tem-
plates for the gravitational-wave signals emitted by com-
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pact binaries when they move in inspiralling slowly pre-
cessing eccentric orbits. In contrast to the simpler prob-
lem of modeling the gravitational-wave signals emitted
by inspiralling circular orbits, which contain only two
different time scales (orbital period and radiation-
reaction time scale), the case of inspiralling eccentric
orbits involves three different time scales: orbital period,
periastron precession, and radiation-reaction time scales.
An improved method of variation of constants is used to
combine these three time scales, without making the
usual approximation of treating adiabatically the radia-
tive time scale. By going to a suitable center-of-mass
frame, the transverse-traceless (TT) radiation field and
hence the GW polarizations are expressed as PN expan-
sions of the form given in Eq. (4) in harmonic coordi-
nates involving only the relative position and velocity.
The polarizations can be rewritten in terms of the ADM
positions and velocities by using the contact transforma-
tions available to move from the harmonic coordinates to
the ADM coordinates. In the ADM coordinates, the un-
perturbed 2PN (3PN) motion may be explicitly solved by
a generalized quasi-Keplerian representation involving
two angles l and ( and four constants of the 2PN (3PN)
motion c. � c1, c2, cl, and c(. By a Lagrange method of
variation of constants, this unperturbed solution is used to
prescribe a general solution to the perturbed (by radiation
reaction) system of the form given by Eqs. (32) and (33),
in terms of the varying c.’s. Among the four c.’s, two (cl
and c() are found to be constants, while the other two c.’s
satisfy two coupled first order differential equations. A
two-scale decomposition of the c.’s is made to model the
combination of the slow (radiation reaction, secular) drift
and the fast (orbital time scale, periodic) oscillations.
This allows us to decompose the TT gravitational-wave
amplitudes or polarizations into a part associated with
the secular variations and another part associated with
the fast oscillations. If one expands in the fast oscilla-
tions, the oscillatory contributions to the phasing would
be equivalent to new additional O�v5=c5� contributions
(which stay always small ) to be added to the usually
considered 2.5PN amplitude h5ij in the adiabatic approxi-
mation. Therefore, as long as an amplitude correction
O�v5=c5� is not needed, our results show that it is enough
to use only secularly varying 'n and 'et. Note that our
description of secular effects automatically includes an
effect of a secular acceleration of the periastron preces-
sion, analogous to the usual secular acceleration of the
orbital motion. Namely, the secular part of the angle (�
l measuring the periastron longitude varies as

'(� 'l �
Z

'k 'n dt; (72)

where 'k�t� � 7$=2" is the secularly varying periastron
precession per orbital period.

Schematically, thus our work may be summarized as
follows:
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In this paper, the orbit of the binary was treated to be
an inspiralling, slowly precessing ellipse, which pre-
vented us from approaching the LSO. However, as men-
tioned earlier, using the EOB approach, we intend to
explore the orbital dynamics and hence the evolution of
gravitational-wave polarizations near the LSO in the near
future. There are also quite a few generalizations which
can be tackled using the formalism presented here and we
list a few of them here. In this paper, the conservative
dynamics was restricted to the 2PN order and therefore, a
natural extension will be to incorporate the 3PN conser-
vative dynamics. This extension is now possible due to
the very recent determination of the 3PN accurate gener-
alized quasi-Keplerian parametrization for the conserva-
tive orbital motion of compact binaries in eccentric orbits
[56]. We also restricted our approach to compact binaries
consisting of nonspinning point masses. It is possible to
extend the generalized quasi-Keplerian parametrization
and hence our method to spinning compact binaries. To do
that, first one needs to extend the quasi-Keplerian repre-
sentation to include the effects due to spin-orbit and spin-
spin interactions, which requires generalizing a restricted
analysis done in Ref. [57] and this is under investigation
[58]. Finally, starting from the gravitational-wave polar-
izations from inspiralling eccentric binaries in the time
domain, it should be possible to perform a spectral analy-
sis and see how their power spectrum depends on various
orbital elements such as n, et, and i.
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APPENDIX A: THE CONSTRUCTION OF PN
CORRECTIONS TO h� AND h�

In this appendix, we sketch the procedure to compute
PN corrections to h� and h� in ADM coordinates, in
terms of the dynamical variables r, _r, �, and _�. It is clear
from Eqs. (1), (3), and (6) that PN corrections h� and h�
require PN corrections to hTTij . The instantaneous 2PN
accurate contributions to hTTij in harmonic coordinates in
terms of the components of n and v, r, _r, and v2 were
computed in Ref. [28]. To obtain similar expressions in
ADM coordinates, we employ the 2PN accurate contact
transformations linking the harmonic and ADM coordi-
nates, given in Ref. [45], which prescribe the way to relate
the dynamical variables in these coordinates. We list
below the transformation equations relating x and v in
the harmonic coordinates to the corresponding ones in
ADM [32]:

xH � xA �
Gm

8c4r

��
�5v2 � _r2��� 2�1� 12��

Gm
r

�
x

�18�r _rv
�
; (A1a)

vH � vA �
Gm _r

8c4r2

��
7v2 � 38

Gm
r

� 3 _r2
�
�� 4

Gm
r

�
x

�
Gm

8c4r

��
13v2 � 17 _r2 � 42

Gm
r

�
�� 2

Gm
r

�
v:

(A1b)

The subscripts ‘‘H’’ and ‘‘A’’ denote quantities in the
harmonic and in the ADM coordinates, respectively.
Note that in all the above equations the differences be-
tween the two gauges are at the 2PN order and hence
no suffix is used for the 2PN terms. We do not list the
transformation relations for r, _r, and v2 as they easily
follow from Eqs. (A1), as r � jxj, r _r � x � v, and
v2 � v � v � _r2 � r2 _�2.

Using Eqs. (A1), the 2PN corrections to hTTij in ADM
coordinates can easily be obtained from Eqs. (5.3) and
(5.4) of Ref. [28]. For economy of presentation, we write
�hTTij �A in the following manner: �hTTij �A � �hTTij �O �

corrections, where �hTTij �A represent the metric perturba-
tions in the ADM coordinates. �hTTij �O is a shorthand
notation for expressions on the right-hand side of
Eqs. (5.3) and (5.4) of Ref. [28], where N;n; v; v2; _r; r
are the ADM variables NA;nA; vA; v2

A; _rA; rA, respec-
tively. The ‘‘corrections’’ represent the differences at the
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2PN order that arise due to the change of the coordinate
system, given by Eqs. (A1). As the two coordinates are
different only at the 2PN order, the corrections come only
from the leading Newtonian terms in Eqs. (5.3) and (5.4)
of Ref. [28]

�hTTij �A � �hTTij �O �
G

c4R

Gm

2c4rA

��
�5v2

A � 55 _r2A��� 2�1

�12��
Gm
rA

�
Gm
rA

�nij�
TT
A � 2

�
�7v2

A

�3 _r2A��� 4�1� 5��
Gm
rA

�
_rA�n�ivj��TTA

�

�
�26v2

A � 34 _r2A��� �4� 84��
Gm
rA

�
�vij�

TT
A

�
:

(A2)

We now have all the inputs required to compute the
2PN corrections to h� and h� in ADM coordinates, in
terms of r, �, _r, and _�. We write, schematically, the
expression for �hTTij �A as

�hTTij �A � .vvvij � .nnnij � .nvn: (A3)

We apply exactly the same procedure which gave us the
Newtonian expressions to h� and h� from Newtonian
contributions to hTTij . Since the explicit expressions for the
final 2PN accurate instantaneous GW polarization states
are too lengthy to be listed here, we write schematically

h� � f.vv�� � �� � �� � �� cos2�� �� � �� sin2��

�.nn�� � �� � �� � �� cos2�� � .nv�� � ��

��� � �� cos2�� �� � �� sin2��g; (A4a)

h� � f.vv�� � �� cos2�� �� � �� sin2��

�.nn�� � �� sin2�� � .nv�� � �� cos2�

��� � �� sin2��g: (A4b)

In the above and what follows �� � �� denotes various co-
efficients expressed in terms of r, _r, _�, m1, m2, and i. The
structure of the PN expansion of the coefficients .ij

above is the following:

.vv � 1�
1

c
�� � �� cos�� �� � �� sin�� �

1

c2
�� � ��

��� � �� cos2�� �� � �� sin2�� �
1

c3
�� � �� cos3�

��� � �� sin3�� �
1

c4
�� � �� � �� � �� cos4�

��� � �� sin4��: (A5)

.nn and .nv have similar expansions with the exception
that for .nv the leading order term is at 1

c order. We note
that, similar to Eq. (6), the above sketched expressions for
h� and h� are in a form suitable to apply our phasing
formalism.
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[45] T. Damour and G. Schäfer, Gen. Relativ. Gravit. 17, 879
(1985).

[46] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006
(1999); 62, 064015 (2000).

[47] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D
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