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Isospectrality in chaotic billiards
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We consider a modification of isospectral cavities whereby the classical dynamics changes from pseudoin-
tegrable to chaotic. We construct an example where we can prove that isospectrality is retained. We then
demonstrate this explicitly in microwave resonators.
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Recently, it has been shown that it is possible to const
two drums which have different shapes but sound exactly
same@1#. This answers the famous question asked by K
@2#: ‘‘Can you hear the shape of a drum?,’’ the answer be
‘‘no,’’ Gordon, et al. constructed an example of a pair
two-dimensional~2D! domains which had different shape
but had identical eigenvalue spectra for the Laplace oper
@3,4#. Since then, a large number of such isospectral p
have been obtained.

One common feature of all shapes constructed so fa
that they are mostly polygonal. Hence, the classical dyn
ics of a particle in billiards of these shapes is pseudoin
grable. A question of interest then is whether isospectra
can be achieved even for cavities with chaotic dynam
which is typical of domains that have convex pieces, a
hence are nonpolygonal. We address this question, viz.
there sound-alike chaotic drums, both theoretically a
through experiments using microwave resonators.

Isospectrality is fundamentally a consequence of top
ogy. The essential aspects of isospectrality can be pro
using the example of the two isospectral domainsC1 andC2
shown in Fig. 1. The proof consists in showing that giv
any eigenfunction in one domain, we can construct a co
sponding one in the other domain with the same eigenva
and vice versa. Each domain consists of seven distinct
domains, each in the form of a triangle. We label these s
domains in an arbitrary fashion, using numbers 1,2, . . . ,7 for
domainC1 and the alphabetsA,B, . . . ,G for domainC2.
Note that the edges of the triangles are marked differe
~by dotted, dashed, and solid lines!, and this allow us to
make a unique correspondence between any pairs of
angles. Consider any wave functionc in domainC1, which
satisfies the eigenvalue equation2¹2c5k2c with Dirichlet
boundary conditions (c vanishes on the boundary of the d
main!. Let us denote byc i the restriction of the wave func
tion c in subdomaini @i.e.,c i( r̄ )5c( r̄ ), if r̄ is a point in the
i th subdomain, elsec i( r̄ )50]. Similarly, we can define the
restricted wave functions$cA , cB , . . . ,cG% from any wave
function in domainC2. Starting from the wave functionc in
C1, let us construct the following restricted wave functio
in domainC2:

cA5c22c̃11c7 ,

cB5c31c11c5 ,
1063-651X/2003/68~2!/026208~5!/$20.00 68 0262
ct
e
c
g

or
rs

is
-
-
y
s,
d
re
d

l-
ed

e-
e
b-
b-

ly

ri-

cC52c̃31c21c4 ,

cD5c42c̃11c6 ,

cE5c52c̃22c̃6 ,

cF5c72c̃31c6 ,

cG52c̃71c52c̃4 . ~1!

The notation used requires some explanation: To const
cA5c22c̃11c7, we first move the three domains 1, 2, an
7 so that they are on top of each other and all simila
marked edges coincide. This may require us to flip the
mains about one of the bases, and in such cases, we
denoted the wave function with a tilde~e.g.,c̃1). The wave
function cA is then obtained by adding~or subtracting! the
values of the three functions at each point. It is easy to
that c85cA1cB1cC1cD1cE1cF1cG is an eigenfunc-
tion for domainC2 with the same eigenvalue. For this, w
notice that~1! Laplace’s equation is satisfied in every d
main, and~2! it can be verified that the wave function van
ishes on the boundary and matches smoothly across su
mains. For example, consider the subdomainsA and B that
are separated by a dashed line. The wave functions are g
by c22c̃11c7 andcB5c31c11c5. The smoothness fol-
lows since from the wave function inC1, we see thatc2

FIG. 1. Isospectral cavitiesC1 andC2. The outer edges of the
polygonal structure constitute the boundary of the cavity. The in
edges have been marked to show the seven triangular subdom
within each cavity.
©2003 The American Physical Society08-1
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matches smoothly withc3 across the dashed boundary, sim
larly c7 matches withc5 and2c̃1 matches withc1.

Similarly, one can construct an eigenfunction forC1 start-
ing from any given eigenfunction inC2. Thus, we have
demonstrated a one-to-one correspondence between
states in the two cavities and hence proved isospectralit

We now modify the domain geometry so as to make
dynamics chaotic. It is expected that making a part of
boundary convex~inwards into the domain! should make the
dynamics chaotic. This is related to the fact that on su
boundaries, any two particle trajectories which are close
each other diverge rapidly after being reflected@5#. A well
known example of a chaotic billiard is the Sinai billiard o
tained by placing a circular scatterer inside a square. In
case, to obtain the modified geometry, we first place a s
terer of arbitrary shape inside one of the triangular sub
mains of any one domain and then place one in a sim
position in every other triangle. An example with dis
shaped scatterers is shown in Fig. 2. The identification of
edges on the two domains makes this construction uniq
Thus, note that in every triangle, the scatterer is placed c
to a vertex where a solid and dotted edge meet. The w
function in each domain now changes, since it has to van
on and inside the boundary of the scatterers. Our const
tion of the modified geometry with scatterers is such that
proof for isospectrality given above can be repeated, si
the wave functions still satisfy the relations given by Eq.~1!.

A direct physical proof of isospectrality can be obtain
by experiments utilizing microwave cavities@6,7#, which
provide a simple and powerful method of simulating sing
particle time-independent quantum mechanics in two dim
sions. This follows from the fact that under appropriate g
metrical constraints, Maxwell’s equations in a cavity reduc
to the Schro¨dinger equation of a free particle inside a tw
dimensional domain of arbitrary shape and topology. In fa
one can show that for a cavity with small thickness~in the z
direction, say! compared to the dimensions in the other tra
verse directions~in the x-y plane!, the z-component of the
microwave electric fieldC(x,y)5Ez satisfies the time-
independent Schro¨dinger wave equation2(]x

21]y
2)C

5k2C ~with the identificationk52p f /c, f being the fre-
quency andc the speed of light! and c vanishes on the
boundary of the domain. This correspondence is exact fo
frequenciesf ,c/2d, whered is the thickness of the cavity
We note that this is also the Helmholtz equation which

FIG. 2. Isospectral cavities with scatterers in the shape of di
The wave function vanishes on the boundary and inside of ev
scatterer.
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scribes, for example, vibrations of a drum. Using this equi
lence, various phenomena~such as quantum chaos! have
been studied. Isospectrality has earlier been demonstrate
Sridhar and Kudrolli@8# using microwave cavities shaped a
in Fig. 1. In the experiments, one obtains the resona
modes of the cavities. Thus, the microwave transmiss
spectra directly yields the eigenvalues of the cavity be
measured. The advantage of this approach is that it can
easily applied to arbitrary 2D domains for which numeric
simulations are very hard@9,10# and may sometimes be prac
tically impossible.

In our experiments, we consider the same set of cavi
~Fig. 1! as the ones considered by Sridhar and Kudrolli@8#
and investigate the question of isospectrality in the prese
of scatterers placed in the specified way inside the cavitie
schematic of the experimental cavity is shown in Fig. 3. T
desired domain is cut out from a brass plate of thicknesd
56 mm. Two other brass plates are placed on top and be
the hole to form a closed cavity. As shown in the figu
microwaves were coupled in and out using loops terminat
coaxial lines that enter through the sides of the cavity. T
length of bases of the triangular subdomains was taken t
a58 cm and the thickness of the cavity wasd56 mm. The
small thickness of the cavity makes it essentially tw
dimensional and the correspondence between Maxw
equations and Schro¨dinger’s equation is good for frequencie

s.
ry

FIG. 3. A schematic of the experimental cavity. This shows
brass plate in which a hole of the desired cavity shape has been
This plate is sandwiched between two other brass plates to for
closed cavity.

FIG. 4. Comparision of spectrum of isospectral cavitiesC1 and
C2 in the absence of scatterers.S21 is the transmission amplitude
8-2
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f ,c/2d525 GHz. For all metallic objects in the 2D spac
between the plates, Dirichlet boundary conditions apply
side the metal.

All measurements were carried out using an HP851
vector network analyzer which measured the transmiss
(S21) parameters. The typical values of quality factor o
tained range from a maximum of 850 at the lower end of
spectrum to a minimum of 250.

TABLE I. The first 33 resonances in the two cavities.

Resonant frequency Resonant frequency Percent
in C1 ~MHz! in C2 ~MHz! discrepancy

1902.500 1903.750 0.0657
2271.250 2274.375 0.1374
2700.625 2719.375 0.6895
3045.625 3062.500 0.5510
3217.500 3215.000 20.0778
3612.500 3631.250 0.5163

3892.500
4054.375
4184.375 4200.625 0.3868
4303.125 4328.125 0.5776
4488.125 4528.125 0.8834
4743.750 4756.250 0.2628
4898.750
5026.875 5031.875 0.0994
5171.875 5194.325 0.4322
5426.250 5474.325 0.8782
5488.750
5625.625 5627.500 0.0333
5793.750 5808.750 0.2582

5903.125
5928.750 5940.625 0.1999

6085
6222.500 6242.500 0.3204
6312.500 6352.500 0.6297
6497.500 6492.500 20.0770
6680.000 6707.500 0.4100
6750.000 6775.000 0.3690

6790.000
6855.000 6877.500 0.3272
6930.000 6992.500 0.8938

TABLE II. The table gives a comparison of the cumulative fr
quency in the cavities with the Weyl estimate.

Frequency Cumulative
~GHz! resonant frequency Weyl estimate

1 0 0
2 1 0.8
3 3 3.4
4 7 7.5
5 13 13.1
6 21 20.4
7 30 29.2
8 38 39.5
02620
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Results.We first attempt to reproduce the results in R
@8# for the cavities shown in Fig. 4. We show in Fig. 4 th
traces of the spectrum for the two cavities in the frequen
range 1-5 GHz. The first 30 resonances of the two cavi
are listed in Table I and one sees that the eigenvalues m
to better than 1%. One sees thateach resonance present i
one is present in the other. A few lines are missing and this i
attributed to the fact that the particular coupling positions
used may not excite some modes. The remaining inacc
cies are due to imperfections in the machining and in
clamping together of various parts of the cavity. Note that

e

TABLE III. The first 22 resonant frequencies in the cavities wi
scatterers.

Resonant frequency Resonant frequency Percentag
in C1 ~MHz! in C2 ~MHz! discrepancy

2181.875 2175.000 20.3161
2330.000 2338.875 0.3795
2906.250 2933.125 0.9163
3303.750 3311.250 0.2265
3346.875 3361.875 0.4462
3746.875 3766.250 0.5144
4135.625
4175.625 4175.625 0.000
4207.500 4222.500 0.3552
4645.000 4666.250 0.4554
4966.875 4956.250 20.2144
5056.250
5106.250 5101.250 20.0980
5148.750 5124.375 20.4757
5540.000 5576.875 0.6612
5603.125 5633.125 0.5326

5889.375
6045.000 6002.500 20.7080
6435.000 6450.000 0.2325
6490.000 6505.000 0.2306
6850.000 6872.500 0.3274
6955.000 6995.000 0.5718

FIG. 5. Comparision of spectrum of the isospectral cavities w
scatterers placed as in Fig. 2.
8-3



d
de

ac
es

a

la
do

n
r

ex
t

s
e
et
Th
. 5
n
%
d

ers
n-
a

e
of

.
the

ate
r-

rent
ing
ity.
or-

s not
in

ked
is
two

ob-
. 2.
y is
le.
of

hat
of

f the

ph
os-
s

.S.

e-

er

DHAR et al. PHYSICAL REVIEW E 68, 026208 ~2003!
amplitudes themselves may be different, as they depen
the location of the coupling, and hence to the way the mo
are excited. Thus, we have obtained the energy spectrum
the given set of isospectral cavities and verified that e
eigenvalue in one is present in the other at the same r
nance value.

As a check on the quality of the spectral data, we comp
the cumulative number of resonance levels as a function
frequency, obtained experimentally with the Weyl formu
for the integrated density of states in a two-dimensional
main @11#:

N~k!5
Ak2

4p
2

Sk

4p
1K, ~2!

whereA andSare the area and perimeter of the domain, a
K is a correction term associated with its topology. Fo
polygonal billiard with inner anglesa i , this is given byK

5( i
1

24 (p/a i2a i /p). In the present case, we findK
50.42. We show in Table II a comparison between the
perimental results with the above formula. The agreemen
quite good.

Results for the chaotic geometry.We place the scatterer
inside the cavity following the prescription outlined abov
The scatterers are taken to be metallic cylinders of diam
1.0 cm and height equal to the thickness of the cavities.
modified spectrum from the two cavities is shown in Fig
and we list the first 22 resonances in Table III. We again fi
that the eigenvalues in the two cavities match to within 1
Thus, there is clear evidence that isospectrality is retaine
the modified chaotic geometry.

TABLE IV. Comparison of Weyl estimate and cumulative fr
quency obtained experimentally after placing the scatterers.

Frequency Cumulative
~GHz! resonant frequency Weyl estimate

1 0 0
2 0 0
3 3 0.9
4 6 4.5
5 11 9.7
6 17 16.3
7 22 24.5

FIG. 6. Anonisospectralarrangement of scatterers. The scatt
ers in cavityC2 are now in a different position.
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It may be noted that the introduction of the scatter
changes the topology of the domain from being simply co
nected to now being multiply connected. We now have
polygonal box withp57 circular holes. In this case, th
topology term in Weyl’s formula for the integrated density
states is given by

K5(
i

1

24S p

a i
2

a i

p D2
p

6
.

The comparison with Weyl’s formula is given in Table IV
The agreement is not very good at low frequencies and
number of levels seems to be somewhathigher than that
given by the Weyl estimate.

To make the demonstration more convincing and illustr
the nontriviality of the isospectral construction with scatte
ers, we consider another geometry~Fig. 6! where the scatter-
ers in the second cavity are placed in a somewhat diffe
manner. The arrangement still seems to follow the fold
construction and naively one would expect isospectral
However, on closer inspection, one finds that the correct c
respondence between the edges of the subdomains ha
been satisfied and the wave function matching condition
fact no longer holds and so weshould notget isospectrality.
We plot the spectrum for this case in Fig. 7. We see a mar
difference from that in Fig. 5, namely, we find that there
no correspondence between the spectral lines from the
cavities. This shows clearly that isospectrality is indeed
tained only for the special arrangement of scatterers in Fig

In conclusion, we have demonstrated that isospectralit
unrelated to the underlying classical dynamics of a partic
We have shown a simple way of introducing scatterers
arbitrary shape into polygonal cavities in such a way t
isospectrality is retained. This leads us to a new class
isospectral scatterers and also a better understanding o
essential features necessary for isospectrality.
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FIG. 7. Spectrum of the cavities in Fig. 6.
8-4



,

ys.

ISOSPECTRALITY IN CHAOTIC BILLIARDS PHYSICAL REVIEW E68, 026208 ~2003!
@1# C. Gordon, D. Webb, and S. Wolpert, Bull. Am. Math. Soc.27,
134 ~1992!.

@2# M. Kac, Am. Math. Monthly73, 1 ~1966!.
@3# P. Berard, Math. Ann.292, 547 ~1992!.
@4# S.J. Chapman, Am. Math. Monthly102, 124 ~1995!.
@5# S. Tabachnikov,Billiards ~Société Mathematique de France
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