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Comment on “Can Disorder Induce a Finite
Thermal Conductivity in 1D Lattices?”

In a recent Letter, Li et al. [1] have reported that the
steady state of the disordered harmonic chain is not unique
and depends on initial conditions. Their claim is based on
a molecular dynamics simulation using Nosé-Hoover ther-
mostats to model the heat baths. We point out that the
uniqueness of the nonequilibrium steady state of the dis-
ordered harmonic chain for a large class of heat baths has
been proven exactly [2,3]. In this Comment we consider a
particular case where it is easy to explicitly demonstrate the
uniqueness of the steady state. This is the case where the
heat bath is modeled by Langevin dynamics. The results
of Li et al. appear to be due to either insufficient equilibra-
tion times or an artifact of using Nosé-Hoover thermostats.

Consider heat conduction through a one-dimensional
mass-disordered harmonic chain. The Hamiltonian of the
system is
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where �xl� are the displacements of the particles about their
equilibrium positions, �pl� are their momenta, and �ml� are
the random masses. We put the boundary conditions x0 �
xN11 � 0. The particles in the bulk evolve through the
classical equations of motion while the boundary particles,
namely particles 1 and N , are coupled to Langevin heat
baths as in Ref. [2].

The equations of motion for the particles are:

m1ẍ1 � 22x1 1 x2 2 �x1 1 hL�t� ;

mlẍl � 2�2xl 2 xl21 2 xl11� ,

l � 2, 3, . . . , �N 2 1� ;

mNẍN � 2�2xN 1 xN21� 2 �xN 1 hR�t� ,

(2)

where hL and hR are Gaussian white noises with the corre-
lations �hL,R�t�hL,R �t0�� � 2TL,Rd�t 2 t0�. Denoting the
coordinates and momenta collectively by the variables ql

so that �q1,q2, . . . , q2N � � �x1, x2, . . . , xN , p1, p2, . . . , pN �
Eqs. (2) can be written in the form

�ql � 2
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where the vector h has all elements zero except hN11 �
hL and h2N � hR and the 2N 3 2N matrix a is given by

a �

µ
0 J
F g

∂
with

Jkl � 2dk,l�mk; Fkl � 2dk,l 2 dk,l21 2 dk,l11 ;

gkl � dk,l�dk,1�m1 1 dk,N�mN� . (4)

In the steady state �d�qkql��dt� � 0. From this and using
Eq. (3) we get the matrix equation

a ? b 1 b ? aT � d , (5)
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FIG. 1. The exact temperature profiles as obtained from invert-
ing Eq. (5) are compared with those from molecular dynamics
simulations for two lattice sizes N � 20 and N � 40 (inset).

where b is the correlation matrix with elements bkl �
�qkql� and dkl � dk,l�2TLdk,N11 1 2TRdk,2N�. We can
invert this equation to obtain b and thus all the moments in-
cluding the local temperatures Tl � �p2

l �ml�. The unique-
ness of the steady state then depends on whether or not
Eq. (5) has a unique inverse. For chains of finite length
and for given disorder realizations it is easy to verify nu-
merically that Eq. (5) does have a unique inverse. We also
find that a molecular dynamics simulation (using a simple
Euler discretization), with Langevin heat baths, reproduces
the exact temperature profile and is independent of initial
conditions. This is shown in Fig. 1. For the N � 20 lat-
tice, averaging over 107 time units is sufficient to achieve
steady-state values. The N � 40 data are averaged over
108 time units. We find that equilibration times increase
rapidly with system size.

Finally, we note that for Langevin heat bath dynamics,
the unique steady-state distribution is, in fact, known ex-
actly [2] and is a Gaussian given by

P��ql�� � �2p�2N Det�b	21�2e21�2
P

b21
lm qlqm . (6)
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