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Heat Conduction in a Two-Dimensional Harmonic Crystal with Disorder
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We study the problem of heat conduction in a mass-disordered two-dimensional harmonic crystal.
Using two different stochastic heat baths, we perform simulations to determine the system size (L)
dependence of the heat current (J). For white noise heat baths we find that J� 1=L� with � � 0:59, while
correlated noise heat baths give � � 0:51. A special case with correlated disorder is studied analytically
and gives � � 3=2, which agrees also with results from exact numerics.
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Introduction.—The problem of proving or verifying
Fourier’s law, J � ��rT, where � is the thermal conduc-
tivity, in any system evolving through Newtonian dynam-
ics has been a challenge for theorists [1,2]. So far most
studies have been restricted to one-dimensional systems
for the simple reason that they are easier to study through
simulations and through whatever analytic methods that
are available. Also the hope is that such studies on one-
dimensional systems provide insights which will be useful
when one confronts the more difficult (and experimentally
more relevant) problem of higher dimensional systems. For
one-dimensional systems, some of the most interesting
results that have been obtained are as follows: (i) For
momentum conserving nonlinear systems, the heat current
J decreases with system size L as J� 1=L�, where �< 1
[3]. Thus Fourier’s law (which predicts � � 1) is not valid.
The exponent � is expected to be universal, but its exact
value is still not known. A renormalization group analysis
of the hydrodynamic equations [4] predicts � � 2=3,
while mode-coupling theory [5] gives � � 3=5. The re-
sults from simulations are not able to convincingly decide
between either of these. (ii) For disordered harmonic sys-
tems, we get J� 1=L� again, but the exponent � depends
on the properties of the heat baths [6–9].

In dimensions higher than one, there are few detailed
studies and it is fair to say that it is totally unclear as to
whether Fourier’s law will hold, and if not, then what the
value of the exponent � is. For nonlinear systems which
are expected to show local thermal equilibrium, both the
hydrodynamic approach and mode-coupling theories pre-
dict a logarithmic divergence of the conductivity in two
dimensions. There have been simulations by Lippi and Livi
[10] who find a logarithmic divergence, but simulations on
larger-size systems by Grassberger and Yang [11] seem to
obtain a power law divergence. A disordered harmonic
model in two dimensions was studied in simulations by
Yang [12], who claimed that beyond some critical disorder
one gets Fourier’s law, i.e., � � 1. It is doubtful that this
claim is correct. The data in the paper seems to indicate
J� 1=L2, which is not Fourier’s law. Besides, these simu-
lations were done with Nose-Hoover heat baths and it is
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known that these can be problematic when applied to
harmonic systems [13]. Simulations by Hu et al. [14] on
the same model but with stochastic heat baths do not find a
Fourier behavior. Finally, an older study by Poetzsch and
Bottger [15] looked at heat conduction in a 2D system with
both disorder and nonlinearity and they give some evi-
dence for Fourier behavior.

In this Letter, we consider heat conduction in a 2D
disordered harmonic system. Let us first try to see what
one should expect theoretically. We expect localization
phenomena (for phonons) to play an important role. A
renormalization group calculation [16] predicts the fol-
lowing: in one dimension, all modes with !> 1=L1=2

are localized; in two dimensions, all modes with !>
�log�L�	�1=2 are localized; in three dimensions, there is a
finite band of frequencies of extended states. This is similar
to results for electron localization with the important dif-
ference that here the !! 0 modes are extended even in
one and two dimensions. Also for the case of electrons,
only electrons near the Fermi-level contribute significantly
to transport, while in heat transport, all phonons contribute.
From the localization results we expect that in three di-
mensions the current in a disordered harmonic system
should be independent of system size (� � 0). In one
and two dimensions it is the small number of low-
frequency phonons �!<!c� which dominate transport
properties. The fact that !c ! 0 with increasing L imme-
diately implies that �> 0. In one dimension it has been
shown [6] that the exact value of � depends on the low-
frequency spectral properties of the bath. A similar calcu-
lation is not available in the 2D case, and we address this
specific question.

Here we present results from a detailed simulational
study to determine the exponent � for a mass-disordered
harmonic system. Two different kinds of stochastic baths
are considered, one with white noise and the other with
correlated noise. We also study a special case where the
disorder is correlated.

Definition of model.—We consider heat conduction in a
two-dimensional mass-disordered harmonic crystal de-
scribed by the Hamiltonian
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where fxij; pij; mijg denote the position (particle displace-
ments about equilibrium positions), momentum, and mass
of a particle at the site �i; j�. We set the masses of exactly
half the particles to one and the remaining to two and make
all configurations equally probable. Heat conduction takes
place in the x direction, and we assume that the ends of the
system are fixed by the boundary conditions x0j � 0 �

xLx�1j. We will assume periodic boundary conditions along
the y direction so that xij�Ly � xij. The heat baths are
modeled through Langevin equations and thus we get the
following equations of motion:

m1j 
x1j � �4x1j � x2j � x1j�1 � x1j�1 � hLj ;

mLxj 
xLxj � �4xLxj � xLx�1j � xLxj�1 � xLxj�1 � hRj ;

mij 
xij � �4xij � xi�1j � xi�1j � xij�1 � xij�1 (1)

(for 1< i < Lx and 1 � j � Ly), where hLj and hRj denote
the forces from the heat baths. We will consider two differ-
ent models for the heat baths: the Gaussian white noise
source and the Gaussian exponentially correlated source.

Gaussian white noise source.—Thus hLj � �� _x1j �
�Lj ; h

R
j � �� _xLxj � �Rj , where the noise terms have the

properties h�Lj i � h�Rj i � 0, h�Lj �t��
L
j0 �t

0�i � 2TL���t�

t0��jj0 , and h�Rj �t��
R
j0 �t

0�i � 2TR���t� t0��jj0 .
Gaussian exponentially correlated source.—In this case,

the bath forces have the forms

hLj � �
Z t

�1
dt0 ~��t� t0� _x1j�t0� � �Lj ;

hRj � �
Z t

�1
dt0 ~��t� t0� _xLxj�t

0� � �Rj ;
(2)

with h�Lj �t��
L
j0 �t

0�i � TL ~��t� t0��jj0 , h�Rj �t��
R
j0 �t

0�i �

TR ~��t� t0��jj0 , and ~��t� � e��t. A simple way of imple-
menting correlated baths in the simulations is by introduc-
ing new dynamical variables yLj , yRj for the bath and setting
hLj � yLj , hRj � yRj . These satisfy the equations of motion
_yLj � ��yLj � _x1j � �Lj , etc. In the long time limit it can
be easily seen that the solutions yLj �t� and yRj �t� have the
required properties of correlated baths. We now discuss the
results from simulations of the two different bath models.

Simulations with white noise.—Equilibration times in
simulations of disordered harmonic lattices can be very
long and this can sometimes lead to wrong conclusions
(see for, e.g., [17]). To avoid such problems we first com-
pare our simulation results with exact numerical results on
steady state properties of small systems. We now briefly
describe the numerical technique.
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With N � LxLy let us define the new variables
fq1; q2; . . . ; q2Ng � fx11; x12 . . . ; xLxLy ; p11; p12 . . . ; pLxLyg.
Then Eq. (1) can be rewritten in the form

_q l � �
X2N
m�1

almqm � �l; (3)

where the vector � has all elements zero except �N�j �
�Lj ; �2N�Ly�j � �Rj (for 1 � j � Ly) and the 2N � 2N
matrix a is given by

a �
0 �M�1

� �

� �
;

where the N � N matrices M, �, and � can be labeled by
the double indices �i; j� and are given by

M�ij�;�i0j0� ��ii0�jj0mij;

��ij��i0j0� �4�ii0�jj0 ��ii0 ��jj0�1��jj0�1�

��jj0 ��ii0�1��ii0�1�;

��ij��i0j0� ���ii0�jj0 ��i1=m1j��iLx=mLxj�:

(4)

In the steady state, hd�qnql�=dti � 0. From this and using
Eq. (3) we get the matrix equation [18]

ab� baT � d �
0 0
0 e

� �
; (5)

where b is the correlation matrix with elements bnl �
hqnqli and e�ij��i0j0� � ��ii0�jj0 �2TL�i1 � 2TR�iLx�. Invert-
ing this equation one obtains b and thus all the moments
which include the local temperatures Tij � hp2

ij=miji and
currents Jxij � hxi�1jpij=miji. The dimension of the matrix
which has to be inverted is N�2N � 1� � N�2N � 1�, and
by using the fact that it is a sparse matrix we have been
able to numerically [19] obtain b for system sizes up to
Lx � Ly � L � 8.

The molecular dynamics simulations were performed
using a velocity-verlet scheme [20]. We chose a step size
of �t � 0:005 and averaging over 108 time steps (for L �
256 we took �t � 0:02 and 107 � 5� 107 time steps). The
temperatures at the two ends were set to TL � 0:5 and
TR � 2:0. In Fig. 1, we plot Tij at every site, as obtained
from the simulations and from the exact solution, for a
particular realization of disorder. The agreement is clearly
very good. We also find that current fluctuations decay
faster than fluctuations of the local temperature. This is
because, in the harmonic model, decay of fluctuations takes
place only through coupling to the reservoirs and this is
weak for localized modes that contribute to the tempera-
ture. This means that equilibrated values for the current can
be obtained in smaller simulation runs.

Simulations were performed for sizes Lx � Ly � L �

4; 8; 16; . . . ; 256, and in Fig. 2 we plot the system size
dependence of the current, averaged over 100 samples (9
samples for L � 256). Error bars shown are those calcu-
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FIG. 1 (color online). Temperature at all the sites of a 8� 8
fully disordered lattice, from simulations and from the exact
solution. The inset shows the disorder-averaged temperature
profiles for different system sizes and seems to approach a linear
form.
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lated from the disorder averaging, the thermal ones being
much smaller. For larger system sizes we find that we need
to average over a smaller number of realizations since the
rms spread in the current decreases rapidly. From our data,
we estimate � � 0:59� 0:01.

We briefly note that Eq. (5) can be solved exactly for the
ordered case, using methods similar to those in [18]. The
current is independent of system size and is given by

J �
�TL � TR�

4"�

Z 2"

0
dq#1�q�;

where #1�q� � 1� 1
2 ��

�2 � $q� �
1
2 �4��

�2 � $q� �
���2 � $q�2	1=2 and $ � 2�1� cos�q�	. The temperature
in the bulk of the system takes the constant value T �
�TL � TR�=2.
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FIG. 2 (color online). Plot of disorder-averaged-current versus
system size for the two different heat baths and for the case of
correlated disorder with white noise. For the full disorder cases,
the solid lines are fits to the last three points and have slopes 0.59
and 0.51. For the case of correlated disorder, the slope from exact
numerics (and also simulations) is compared to 1.5, which is
what one expects analytically.
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Simulations with correlated noise.—In this case the
simulations were done by using a slightly modified version
of the velocity-verlet algorithm with a step size �t �
0:001 and averaging over 108 time steps. The accuracy of
the algorithm was tested in one dimension, where exact
numerical results are available [6]. Simulations were per-
formed for sizes L � 4; 8; 16; . . . ; 128 with disorder aver-
ages over 100 samples (22 for L � 128). The results are
plotted in Fig. 2 and we estimate the exponent � � 0:51�
0:01 in this case, which is somewhat different from the
slope of � � 0:59 for the case of uncorrelated noise. It is
possible that the small difference is a finite-size effect, and
for larger system sizes we might see the same exponent.
The error bars given are statistical errors, while those from
finite-size effects are more difficult to estimate. The next
example throws some light on this aspect.

Correlated disorder.—Finally, we consider a special
case of correlated disorder (with white noise baths) which
was discussed in [7]. This case is analytically tractable and
gives us some insights on possible finite-size effects. In this
model, in a given column, say, the ith, all particles have the
same mass mi. This case can be reduced to an effective 1D
problem [7]. Using the fact that there is order in the
transverse direction, we transform to new variables using
an orthogonal basis  j�q�, which satisfies the equation
2 j�q� �  j�1�q� �  j�1�q� � $q j�q�. We choose the
 j�q� to be real and find that $q � 2�1� cos�q�	, with q �

2s"=Ly where s � 1; 2; . . . ; Ly. The new variables xi�q� �
�jxi;j j�q� satisfy the following equations of motion:

m1 
x1�q� � �'�q�x1 � x2 � � _x1 � �L�q�;

mLx 
xLx�q� � �'�q�xLx � xLx�1 � � _xLx � �R�q�;

mi 
xi�q� � �'�q�xi � xi�1 � xi�1

(6)

(for 1< i < Lx), where '�q� � 2� $q. The transformed
noise variables �L�q; t� � �j�

L
j �t� j�q� satisfy

h�L�q; t��L�q0; t0�i � 2TL���t� t0��qq0 and similarly for
�R�q; t�. Thus for every q we have an equation identical to
that of a 1D disordered chain with an additional on-site
potential V � $qx2=2. The heat current in terms of the
transformed variables is

J �
1

Ly

X
q

h��� _x1�q� � �L�q�	 _x1�q�i: (7)

Fourier transforming Eq. (6) using ~xi�q;!� �R
dtxi�q; t�e�i!t, ~�L;R�q;!� �

R
dt�L;R�q; t�e�i!t, we

get the following set of equations:

�'�q� �m1!
2 � i�!	~x1 � ~x2 � ~�L;

�~xi�1 � �'�q� �mi!
2	~xi � ~xi�1 � 0;

�~xLx�1 � �'�q� �mLx!
2 � i�!	~xLx � ~�R;

which in matrix notation can be written as
Y�q;!�~x�q;!� � ~��q;!�, where ~x and ~� are the vectors
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�~x1�q;!�; . . . ; ~xLx�q;!��
T and �~�L�q;!�; 0; 0; . . . ;

~�R�q;!��T . The matrix Y � k��!2M� i!� where
Mnl � �nlmn; �nl � '�q��nl � �nl�1 � �nl�1 and �nl �
��nl��n1=m1 � �nLx=mLx�. After some manipulations the
current in Eq. (7) simplifies to give

J �
�2�TL � TR�

"Ly

X
q

Z 1

�1
d!!2jY�1

1Lx
�!; q�j2: (8)

The inverse element is given by [6] jY�1
1Lx

�!; q�j2 �
jDet�Y	j�2, where Det�Y	 � D1;Lx � i�!�D2;Lx �

D1;Lx�1� � �2!2D2;Lx�1 and Di;i0 is defined to be the de-
terminant of the submatrix of k�̂�!2M beginning with
the ith row and column and ending with the i0th row and
column. These matrix elements can be expressed in terms
of products of random matrices [6]. Using these results one
can very efficiently compute the integral in Eq. (8) and
obtain J accurately for quite large system sizes �L � 512�.
In Fig. 2 we show the system size dependence of the
current as obtained from the exact numerical method and
also from simulations. They agree very well and give � �
1:5. This value can be understood analytically by noting
that the leading contribution to the current in Eq. (8) comes
from the q! 0 term (finite q modes decay exponentially
with system size) and this is identical to a pure 1D chain for
which � � 3=2.

The fact that the simulation results agree extremely well
with the exact numerical results (for sizes up to L � 128)
proves the accuracy of our simulations. Further, we see that
for the correlated disorder case the asymptotic result for the
exponent can already be seen at around L � 512. This
gives us confidence that for the case of the fully disordered
lattice we might already be close to the asymptotic value.
This is also supported by the fact that the change in slope of
the J-versus-L curves in Fig. 2 over the system sizes
studied is very small.

Conclusions.—We have performed extensive simula-
tions of heat conduction in a mass-disordered harmonic
solid in two dimensions, which give exponents � � 0:59
for white noise heat baths and � � 0:51 for correlated
noise baths. A system with correlated disorder gives, some-
what surprisingly, a larger exponent � � 3=2. The combi-
nation of simulations and exact numerics gives us
confidence on the accuracy of our results and also addi-
tional insight. Some interesting open problems are the
exact determination of the exponent � in two dimensions,
for any heat bath model, and an analytical understanding of
dependence of � on bath properties.
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