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We compute the distribution of the work done in stretching a Gaussian polymer, made ofN monomers, at a
finite rate. For a one-dimensional polymer undergoing Rouse dynamics, the work distribution is a Gaussian and
we explicitly compute the mean and width. The two cases where the polymer is stretched, either by constrain-
ing its end or by constraining the force on it, are examined. We discuss connections to Jarzynski’s equality and
the fluctuation theorems.
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I. INTRODUCTION

Classical thermodynamics does not give us all the details
about a nonequilibrium process. For example consider a non-
equilibrium process during which we perform workW on a
system kept in contact with a heat bath at some fixed tem-
peratureT. The system starts from an equilibrium state de-
scribed by the temperatureT and some other parameter, say
l se.g., volumed. During the process the parameter changes
from its initial valueli to a final valuel f. At the end of the
process the system need not be in equilibrium but will even-
tually relax to an equilibrium state described byT and l f.
The second law then tells us that

Wù DF, s1d

whereDF is the difference of free energy between the two
equilibrium states. The equality holds if the process is revers-
ible. For an irreversible process what other information can
one extract from a measurement of the work done? First note
that for specified initial and final values of the parameterl
and a fixed pathlstd connecting them, the work done will
not have a unique value. Every time we repeat the process
we will get a different work done because:sad the initial
microscopic state we start from may be different andsbd for
a given initial microscopic state the time evolution is not
unique since the system is in contact with a heat bath. Thus
we will get a probability distribution for the work done and it
is of interest to examine the properties of this distribution.
Recently there has been a lot of interest on issues related to
properties of such distribution functions. Two very interest-
ing results involving universal properties of these distribu-
tions have been proposed.

The first is a surprisingequalityobtained by Jarzynskif1g
which states that

ke−bWl = e−bDF, s2d

where the average is over the work distribution function.
This result should be compared with theinequalityin Eq. s1d
that one obtains from usual thermodynamics. For systems
evolving under stochastic Markovian dynamics, Eq.s2d is
exactf2,3g. It is also exact for Hamiltonian systems coupled

to heat baths, in the limit where the coupling strength→0.
For finite but weak coupling it is expected that the equality
holds with a high accuracyssee Refs.f4,5gd.

The second set of results are obtained when one looks at
the probability distribution of various nonequilibrium quan-
tities such as, for example, the entropy production. In this
case some new fluctuation theorems have been proposed
f6–8g. These theorems were originally derived for determin-
istic systems but have also been proved for stochastic sys-
tems f2,3,9g. These theorems look at the ratio of the prob-
abilities of positive to negative entropy production during a
nonequilibrium process and thus give some measure of “sec-
ond law violations” which can be significant if one is looking
either at small systems or at small time intervals. There are
two versions of the fluctuation theorem, the steady state fluc-
tuation theoremsSSFTd and the transient fluctuation theorem
sTFTd. In the former case one looks at a system in a non-
equilibrium steady state and the average entropy production
rate is examined. In the transient fluctuation theorem a sys-
tem is initially prepared in thermal equilibrium and one looks
at the entropy produced in a finite timet. An important point
to note is that the definition of entropy production in small
snonthermodynamicd systems and in a nonequilibrium situa-
tion is somewhatad hocand various definitions have been
used. A number of authorsf10–15g have looked, both theo-
retically and in experiments, at fluctuations of quantities such
as work, power flux, heat absorbed, etc., during a nonequi-
librium process. In an interesting work it was shown by
Crooksf2g that the Jarzynski equality and the TFT are con-
nected.

Finding universal properties of various nonequilibrium
distribution functions is of obvious interest. At the same time
the explicit forms of the distributions for different systems is
clearly of interest too. In fact for systems such as polymers
these are experimentally accessiblef16g and it seems plau-
sible that they can give information on the dynamics of the
system. There has not been much work in this direction. In a
recent paperf17g Speck and Seifert have shown that in the
limit of slow driving the work distribution becomes a Gauss-
ian. They consider systemsswhich could be nonlineard
evolving through Langevin dynamics. Apart from this work,
most other explicit calculations of nonequilibrium distribu-
tion functions have considered single particle systems.

In this paper we consider the well-known model of a flex-
ible polymer whose motion is governed by Rouse dynamics.*Electronic address: dabhi@rri.res.in
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We look at the work done when the polymer is stretched at a
finite rate. The work distribution functions in different en-
semblessconstant force and constant extensiond are com-
puted explicitly and the dependence of the distributions on
switching rates and system sizes is examined. We discuss our
results in the context of Jarzynski’s equality and the fluctua-
tion theoremssTFTd.

II. DISTRIBUTION OF WORK IN THE CONSTANT
EXTENSION ENSEMBLE

We consider a one-dimensional Gaussian polymer whose
energy is given by

H = o
l=1

N+1
kl

2
syl − yl−1d2, s3d

with y0=0 andyN+1=Ystd which is a specified function of
time. For the moment we take the spring constantskl to be
arbitrary. We assume the following Rouse dynamics for the
chain:

ẏl = −
kl

g
syl − yl−1d +

kl+1

g
syl+1 − yld + hl, l = 1,2, . . . ,N,

s4d

where hl is Gaussian noise with correlations given by
khlstdl=0 andkhlstdhmst8dl=2/sbgddlmdst− t8d. Let us define
the dimensionless variableszl =Îbkyl, a=ÎbkY and t
=kt/g wherek is the mean spring constant of the chain. In
terms of these the equations of motion take the form

dzl

dt
= −

kl

k
szl − zl−1d +

kl+1

k
szl+1 − zld + jl, l = 1,2, . . . ,N,

s5d

which can be written in matrix notation as

dz

dt
= − Az+ hstd + jstd, s6d

where zT=hz1,z2, . . . ,zNj, jT=hj1,j2, . . . ,jNj, hT

=h0,0, . . . ,kN+1astd /kj and the noise satisfieskjlstdl=0 and
kjlstdjmst8dl=2dlmdst−t8d. The matrixA is tridiagonal with
elementsA l,l =skl /k+kl+1/kd, A l,l+1=−kl+1/k, A l,l−1=−kl /k.
The general solution of this equation is given by

zstd = Gstdzs0d +E
0

t

dt8Gst − t8dfhst8d + jst8dg, s7d

whereGstd=e−At. Over an interval of timetm the work done,
as defined by Jarzynski, is then given by

W̃J = bWJ = bE
0

tm ]H

]Y
Ẏdt

=
kN+1

k
E

0

tm

sa − zNdȧdt

=
kN+1

2k
fa2stmd − a2s0dg −E

0

tm

dtḣTz.

This work is equal to the true mechanical work done by the

external force which we will callW̃ sthus in this caseW̃

=W̃Jd. We now plug in the solution forzN from Eq.s7d to get

W̃=
kN+1

2k
fa2stmd − a2s0dg −E

0

tm

dtḣTFGstdzs0d

+E
0

t

dt8Gst − t8dhst8d +E
0

t

dt8Gst − t8djst8dG .

s8d

SinceW̃ is linear inzs0d and j both of which are Gaussian

variables, it follows that the distribution ofW̃ will also be
Gaussian. We then only need to find the mean and the second
moment which we now obtain. We first state a few results on
equilibrium properties of the Gaussian chain. The equilib-
rium free energy of the chain is given by

Zsad =E dy1dy2 ¯ dyNe−bH,

where

bH = o
l=1

N+1
kl

2k
szl − zl−1d2 =

1

2
zTAz− hTz+

1

2

kN+1

k
a2. s9d

This leads to the following equilibrium free energy of the
polymer sapart froma-independent constantsd:

F̃ = bFsad = lnsZd =
kN+1

2k
a2 −

1

2
hTA−1h =

1

2
k̄a2, s10d

where 1/k̄=k/k1+k/k2+¯k/kN+1. The mean positions of
the particles and their fluctuations can be easily computed at
any force and are given by

kzl = A−1h, s11d

ksz− kzldszT − kzTldl = A−1. s12d

Mean and fluctuations of the work done. From Eq.s8d we
get for the mean work done:

kW̃l =
kN+1

2k
fa2stmd − a2s0dg −E

0

tm

dtḣTFGstdkzs0dl

−E
0

tm

dtE
0

t

dt8ḣTGst − t8dhst8dG . s13d

We do integration by parts so as to express everything in

terms of the ratesḣ. Using the equilibrium results in Eqs.
s10d and s11d we finally get

kW̃l = F̃„astmd… − F̃„as0d… +E
0

tm

dtE
0

t

dt8ḣTstdA−1Gst

− t8dḣst8d. s14d

The fluctuations of the workksW̃−kW̃ld2l=s2 is given by
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s2 =E
0

tm

dtE
0

tm

dt8ḣTstdGstdkfzs0d − kzs0dlgfzs0d

− kzs0dlgTl 3 Gst8dḣst8d

+E
0

tm

dt1E
0

t1

dt18E
0

tm

dt2E
0

t2

dt28ḣ
Tst1d 3 Gst1 − t18d

3kjst18dj
Tst28dlGst2 − t28dḣst2d.

Using Eq.s12d and the relationkjstdjTst8dl=2dst−t8dI this
simplifies to

s2 =E
0

tm

dtE
0

tm

dt8ḣTstdGstdA−1Gst8dḣst8d + 4

3 E
0

tm

dt1E
0

t1

dt2E
0

t2

dt28ḣ
Tst1dGst1 − t28dGst2

− t28dḣst2d.

Finally using the relation e0
t2dt28Gst1−t28dGst2−t28d

=sA−1/2dfGst1−t2d−Gst1dGst2dg we get

s2 = 2E
0

tm

dtE
0

t

dt8ḣTstdA−1Gst − t8dḣst8d. s15d

The distribution of work done is then

PsW̃d =
1

s2ps2d1/2e−sW̃ − kW̃ld2/2s2
. s16d

As expected for a Gaussian process we find that

kW̃l − DF̃ = s2/2. s17d

Note that in the original variables, both the equilibrium free
energysDFd and the average worksWd are independent of
temperature while the width of the distributionss2/b2d de-
pends linearly on temperature. It is easily verified that the

work distribution satisfies the Jarzynski equalityke−W̃l
=e−DF̃. On the other hand, with the present definition of
work, the fluctuation theorem is not satisfied. However if we

define the “dissipated work”W̃diss=W̃−DF̃ then the distribu-

tion of W̃diss, P̃sW̃dissd satisfies the fluctuation theorem:

P̃sW̃dissd

P̃s− W̃dissd
= eW̃diss. s18d

SinceWdiss gives some measure of deviation from a qua-
sistatic and adiabatic process it seems reasonable to think of
it as an entropy production term which is what usually ap-
pears in the fluctuation theorems.

Some special cases. Let us consider the case where all
spring constants are equalkl =k and let us assume that the
polymer is pulled at a constant rate so thatastd=at /tm. The
effective spring constant isk/ sN+1d and so the free energy

of the polymer isF̃=a2/2sN+1d. From Eq.s15d we get the
spread in the work done:

s2 =
2a2

tm
FA−2 +

1

tm
A−3se−Atm − 1dG

NN
, s19d

where f¯gNN denotes a matrix element. The average work
can be obtained from Eq.s17d. In the two limits of very slow
stm→`d and very faststm→0d processes, we get

s2 =
2a2ANN

−2

tm
<

4a2N

p2tm
sslowd s20d

=
a2N

sN + 1d
sfastd. s21d

For an instantaneous pulling process the work done is simply

W̃=hfastmd−zNg2−fas0d−zNg2j /2 and the result in Eq.s21d
can be directly obtained.

It is instructive to plot the work distributions for different
pulling rates. To see the effect of the polymer length on the
distribution we consider two cases:sid A short polymer with
N=1, a=1 and sii d a long polymer withN=100, a=10. In
each case the parameter values are chosen so that the change

in equilibrium free energy given byDF̃=a2/2sN+1d is of
order 1. The pulling rate has to be compared with the relax-
ation time of the polymer which is given bytR=1/lsmwhere
lsm=4 sin2sp /2sN+1dd is the smallest eigenvalue ofA. For
largeN we gettR=N2/p2. For the casessid and sii d we nu-
merically evaluate Eq.s19d for pulling rates r =tR/tm
=0.1,1,10,100. The resulting distributions are plotted in
Fig. 1 and Fig. 2. For the long polymer the probability of
negative work realizations is quite small. We can increase
their probability by increasing the temperature which broad-
ens the distributions while keeping the mean unchanged.

III. DISTRIBUTION OF WORK IN THE
CONSTANT-FORCE ENSEMBLE

Next we compute the work distribution in the constant-
force ensemble. Instead of constraining the end of the poly-
mer we apply a time-dependent forcefstd on it. The time-

FIG. 1. Distributions of the work done in pulling a short poly-
mer sN=1d at different ratesr =tR/tm.
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dependent Hamiltonian of the system is now given by

bH = o
l=1

N
kl

2k
szl − zl−1d2 − f̃stdzN, s22d

where f̃ =Îb /kf and the equations of motion are

dz

dt
= − Az+ hstd + jstd,

with hTstd=f0,0, . . . ,f̃stdg. In this case we note that the gen-

eralized workW̃J, as defined by Jarzynski, is given byW̃J

=−e0
tmdtzNḟstd and is not equal to the true mechanical work

done on the system which isW̃=e0
tmdt f̃stdżN. It is straight-

forward to compute the distributions of bothW̃ andW̃J but in
this paper we will only compute the distribution of the true

mechanical workW̃ since it relates more closely to the fluc-

tuation theorems. We again find thatW̃ has a Gaussian dis-
tribution with the following mean and variance:

kW̃l =E
0

tm

dthTstdhstd −E
0

tm

dtE
0

t

dt8hTstd

3Gst − t8dAhst8d −E
0

tm

dthTstdGstdhs0d,

s2 = 2E
0

tm

dthTstdhstd − 2E
0

tm

dtE
0

t

dt8hTstd

3Gst − t8dAhst8d.

For f̃s0d=0, we getkW̃l=s2/2 which means thatPsW̃d sat-
isfies the fluctuation theorem. It is then natural to again ask if

W̃ is some measure of entropy production. If this was so then

W̃ should vanish for an adiabatic process. To check this we

first expresskW̃l in terms of the rateḣstd. We get

kW̃l =
1

2
fhTstmdA−1hstmd − hTs0dA−1hs0dg

− hTstmdE
0

tm

dtA−1Gstm − tdḣstd

+E
0

tm

dtE
0

t

dt8ḣTstdA−1Gst − t8dḣst8d.

Hence for an adiabatic process we getkW̃l=−DG̃s f̃d where

G̃s f̃d=bGsfd=−hTA−1h/2 is the polymer free energy in the

constant force ensemble. Thus in this casekW̃l is not zerofor
an adiabatic process and so it is not an obvious measure of
entropy productioneven though it does satisfy the fluctuation
theorem.

Interestingly, sinces2=2kW̃l, thus even for an adiabatic
process, the work-distributiondoes not tendto a d function
as one might naively expect. However in the thermodynamic
limit N→` the width approaches zero ass,1/N1/2 so in
this limit the usual expectation is indeed satisfied.

IV. CONCLUSIONS

In conclusion, in this paper we have computed explicitly
the distribution of work done when a polymer is stretched at
a finite rate. We examine different ensembles and look at
different definitions of work. As has been noted by earlier
authors, for different definitions of the work, the correspond-
ing distributions can have quite different properties. In the
constant extension ensemble the generalized workWJ is the
same as the true mechanical workW and Jarzynski’s identity
is satisfied. In this case, the fluctuation theorem is satisfied
by a different quantityWdiss which does seem like a quantity
which gives some measure of entropy production. In the con-
stant force ensemble,WJ is different from the true workW
which does not satisfy the Jarzynski identity. On the other
hand the distribution ofW satisfies a fluctuation-theorem like
relation. However in this case we find that it is not possible
to identify the work as a measure of entropy production.
Another point that should be noted is that the usual version
of the fluctuation theorem, that has been proved for stochas-
tic systemssseef2g for exampled, relates probabilities of en-
tropy production in the forward and time-reversed processes.
However for linear systemsslike the Gaussian polymerd one
can show that the forward and time-reversed distributions are
identical f3g and so the fluctuation theorem can be stated in
terms of the forward process only.

As a practical use, the Jarzynski identity has been pro-
posed as an efficient method for computing equilibrium free
energy profiles from nonequilibrium measurements, both in
simulations and experimentsf18,19g. For the specific case of
polymers, we expect that a combination of simulations and
our exact results on the work distribution, should lead to

FIG. 2. Distributions of the work done in pulling a long polymer
sN=100d at different ratesr =tR/tm.
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better estimates on efficiency and of errorsf20–22g sand how
they depend on rates and system sizesd involved while using
the nonequilibrium methods in free energy computations.

For non-Gaussian models of polymers such as, for ex-
ample, semiflexible polymers, the work distribution function

is likely to be non-Gaussian. For slow pulling rates one again
expects a Gaussian distribution. It will be interesting to com-
pute such distributions explicitly and study their depen-
dences on rates, system sizes and other parameters such as
the rigidity of the polymer.
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