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We study the role of fluctuations in single molecule experimental measurements of force-extensionsf-zd
curves. We use the wormlike chainsWLCd model to bring out the connection between the Helmholtz ensemble
characterized by the free energyfFszdg and the Gibbs ensemble characterized by the free energyfGsfdg. We
consider the rigid rod limit of the WLC model as an instructive special case to bring out the issue of ensemble
inequivalence. We point out the need for taking into account the free energy of transition when one goes from
one ensemble to another. We also comment on the “phase transition” noticed in an isometric setup for semi-
flexible polymers and propose a realization of its thermodynamic limit. We present general arguments which
rule out nonmonotonic force-extension curves in some ensembles and note that these donot apply to the
isometric ensemble.
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I. INTRODUCTION

In the past, experiments on polymers were confined to
studying their bulk properties, which involved probing large
numbers of moleculesf1g. The results of these experiments
could be analyzed by using the traditional tools of thermo-
dynamics. In recent years, however, researchers have been
successful in micromanipulatingsinglebiological molecules
such as DNA, proteins and RNA to probe their elastic prop-
erties f2g. Such studies serve a twofold role. On one hand,
they shed light on mechanical properties of semiflexible
polymers, which are of clear biological importance in pro-
cesses such as gene regulation and transcriptionf3–5g. On
the other hand, they provide physicists with a concrete test-
ing ground for understanding some of the fundamental ideas
of statistical mechanics. In statistical mechanics, an isometric
setup would be described by the Helmholtz free energy,
whereas an isotensional setup would be described by the
Gibbs free energyf6g. In the thermodynamic limit these two
descriptions agree, but semiflexible polymerssthose with
contour lengths comparable to their persistence lengthsd are
not at the thermodynamic limit. Experimentally, both isomet-
ric and isotensional ensembles are realizable. Typically the
polymer molecule is suspendedsin a suitable mediumd be-
tween a translation stage and a force sensor. The force sensor
could be realized by using an atomic force microscope
sAFMd cantilever or by optical or magnetic forces. As noted
by Kreuzer and Paynef7g, an isometric setup can be realized
using a stiff trap and an isotensional setup by using a soft
trap. In a more sophisticated version, an electronic feedback
circuit is used to control the forcesor the extensiond and one
measures the fluctuations in the extensionsor the forced f8g.
Here we will focus on the role of fluctuations in single mol-
ecule experiments. In order to correctly interpret such experi-
ments one needs to understand the effect of fluctuations on

the measured quantities. For instance, it turns out, that an
experiment in which the ends of a polymer molecule are
fixed sisometricd and the force fluctuates yields a different
result from one in which the force between the ends is held
fixed sisotensionald and the end-to-end distance fluctuates
f8,9g. This difference can be traced to large fluctuations
about the mean value of the force or the extension, depend-
ing on the experimental setup. These fluctuations vanish only
in the thermodynamic limit of very long polymers.

Here we use the wormlike chainsWLCd modelf10–12g to
study the inequivalence of ensembles due to finite size ef-
fects. The WLC model has been very successful in achieving
quantitative agreement with experimentally measured force-
extension curvesf2,13g. The paper is organized as follows.
In Sec. II we discuss the Helmholtz and Gibbs ensembles. In
Sec. III we consider the rigid rod limit which forcefully
brings out the main issues dealt with in this paper. In Sec. IV
we draw attention to the importance of taking into account
the free energy of transition in going from one ensemble to
another. In Sec. V we discuss the thermodynamic limit of a
“phase transition” recently seen in semiflexible polymers. Fi-
nally, we end the paper with a discussion in Sec. VI.

II. HELMHOLTZ AND GIBBS ENSEMBLES

Consider an idealized experiment in which one end of a
molecule is held fixed atsx0,y0,0d and the other end is at-
tached to a dielectric bead confined to a harmonic optical
trap described by the potential

Vsx,y,zd = A
fsx − x0d2 + sy − y0d2g

2
+ C

sz− z0d2

2
, s1d

with sx0,y0,z0d defining the center of the trap. ConsiderA to
be small so that the bead is free to move in the planez=z0.
For a polymer of contour lengthL and persistence lengthLP
it is convenient to introduce the following dimensionless
variables:z=z/L, z0=z0/L, b=L /LP, and f =FLP/kBT where
F is an applied stretching force andkBT is the thermal energy
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at a temperatureT. ConsiderPszddz, the number of configu-
rationsscounted with Boltzmann weightd f11g for a polymer
of lengthL starting from the origin and ending anywhere on
the x–y plane in an intervaldz of z. The free energy defined
by Fszd=−s1/bdln Pszd is the Helmholtz free energy. The
partition functionf14g for the combined system consisting of
the polymer moleculeand the trap is given by

Zsz0,bd =Î C̃

2p
E

−`

+`

dze−bFszde−C̃fsz − z0d2/2g, s2d

whereC̃=CL2. By tuning the longitudinal stiffnessC̃ we can
realize the two limiting cases.

Helmholtz. In the limit of a stiff trapsC̃→`d, the Gauss-
ian factor pertaining to the trap approaches a delta function
and one gets

Zsz,bd = e−bFszd. s3d

Here we have switched notation to writez in place of z0
Thus a stiff trap realizes the Helmholtz ensemble by con-
straining fluctuations in thez coordinate. To extend the mol-
ecule from z to z+dz one needs to apply a forcekfl
=]F /]z in order to compensate for the change of entropy.
Plotting kfl versusz we find theskfl ,zd force-extension re-
lation.

Gibbs. In the opposite limit of a soft trapsC̃→0 andz0

→` such thatC̃z0=bf remains finited, one getsf14g

Z̃sf,bd =E
−`

+`

dze−bFszdebfz. s4d

Thus a soft trap permits fluctuations in thez coordinate but
constrains the force fluctuationsf7g and thus realizes the

Gibbs ensemble.Z̃sfd is the generating function for the
z distribution. Defining the Gibbs free energyGsfd
=−b ln Z̃sfd we can work out the mean extensionkzl
=−]G/]f and theskzl , fd force-extension relation.

Notice thatZ̃sfd is the Laplace transform ofZszd. In the
thermodynamic limit of long polymerssb→`d the Laplace
transform integral Eq.s4d is dominated by the saddle point
value and thereforeFszd andGsfd are related by a Legendre
transform:

Fszd = Gsfd + fz. s5d

For finite b, i.e., for a polymer of finite extent, the saddle
point approximation no longer holds true and fluctuations
about the saddle point value of the free energy become im-
portant. Thus one finds thatFszd andGsfd arenot Legendre
transforms of each other. We notice that this difference be-
tween the Legendre transformfEq. s5dg and the Laplace
transformfEq. s4dg is the mathematical origin of the finite
size fluctuation effects described in this paper. These fluctua-
tions are of thermal origin and can ultimately be traced to
collisions of the polymer molecule with the molecules of the
suspending medium. In this section we have recovered the
results off7g. We have also gone beyondf7g and traced the

origin of the difference between the two ensembles to the
difference between the Legendre and Laplace transforms.

III. RIGID ROD LIMIT: AN INSTRUCTIVE EXTREME
CASE

We noticed in the last section that because of fluctuation
effects the Helmholtz and Gibbs free energies are not related
by a Legendre transform. An important consequence of this
is that thesF ,kzld relation is different from theskFl ,zd rela-
tion. In other words, the force-extension curves plotted in the
two ensembles aredistinct due to finite size fluctuation ef-
fects. Fluctuations dominate at finiteb and disappear in the
thermodynamic limitsb→`d of flexible polymers. We bring
out the ensemble dependence of the force-extension relations
explicitly and most dramatically in the limiting case of a
very stiff polymersb→0d.

In this extremely rigid limitf15g, the end of the polymer
is uniformly distributed over the sphere of directions. In the
Helmholtz ensemble we thus havePszddz=dz/2L for −L
,z,L andPszd=0 otherwise. Since the free energy is con-
stant in the range −L,z,L and diverges otherwise, we find
that the average forcekFl vanishes foruzu ,L and diverges
for uzu =L fsee Fig. 1sadg. In the Gibbs ensemble we find by
standard manipulations that

kzl = SL cothFL −
1

F
D , s6d

which differs from thekFl−z relation determined above in
the Helmholtz ensemblefsee Fig. 1sbdg. The theoretical
analysis of the ensemble dependence of the force-extension
relation based on the rigid rod limit is a new result of this
paper.

Thus an experimenter making force-extension measure-
ments on, for instance, Actin filamentsf16g, would find that
a measurement in which the force is controlled and the end-
to-end distance is measured leads to a different force-
extension curve from a measurement in which the end-to-end
separation is controlled and the force is measured. A theorist
interpreting the curves also needs to keep in mind whether
the curves are obtained in a constant-force setup or a
constant-extension setup since a proper interpretation of the
curves requires a knowledge of the ensemble used in the
measurement.

FIG. 1. Force-extension curve in the Helmholtzs1ad and Gibbs
s1bd ensembles forb=0. We have setL=1.
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IV. INEQUIVALENCE OF ENSEMBLES AND THE FREE
ENERGY OF TRANSITION

In an isotensional setup one controls the force and one
measures the mean extension and plots it as a function of
force. In an isometric setup the roles of extension and force
are interchanged. In both setups zero force corresponds to
zero extensionsz=0d and a large force corresponds to maxi-
mal extensionsi.e.,z=1d. Imagine going from zero force to a
large force via the isotensional setup and returning from
maximal extension to zero extension via the isometric setup.
Since the “equation of state” depends on the chosen en-
semble, in general there will be two distinct curves describ-
ing the extension in one ensemble followed by contraction in
the otherf17g. In such a situation there could be a net area
enclosed in the force-extension plane. This poses a puzzle
because it appears that a cyclic process can extract work
from the system. This puzzle is easily resolved. In complet-
ing the cycle and returning to the initial state one is in fact
changing ensembles twice at the two end points. These cor-
respond tofinite free energy changes which need to be taken
into account.

Let sz1, f1d and sz2, f2d be two points which lie on both
isometric and isotensional force-extension curves. In our ex-
amplesz1, f1d=s0,0d andsz2, f2d=s1,`d. Let us suppose that
we go from sz1, f1d to sz2, f2d in the isotensional ensemble
and return via the isometric ensemble. We find that

Gsf2d − Gsf1d =E
f1

f2 ]G

] f
df = −E

f1

f2

kzldf. s7d

Similarly,

Fsz2d − Fsz1d =E
z1

z2 ]F

]z
dz =E

z1

z2

kfldz. s8d

The area enclosed between the two curves is given by

W=E
z1

z2

fdkzl −E
z1

z2

kfldz,

which can be rewritten as

W=E
z1

z2

dsfkzld −E
f1

f2

kzldf −E
z1

z2

kfldz

= f2z2 − f1z1 + Gsf2d − Gsf1d − Fsz2d + Fsz1d

= ffz + Gsfd − Fszdg1
2

= fF̃szd − Fszdg1
2

= DFtrszdu12, s9d

where we defineDFtrszd as the free energy of transition.

DFtrszd is the difference betweenF̃szd= fz+Gsfd, the Leg-
endre transform ofGsfd and the Helmholtz free energyFszd.
Since these are not equalsexcept in the limit of long poly-
mersd the free energy of transition between ensembles must
be considered in order that the total free energy change in a
cyclic process vanishes.

In order to understand this issue more explicitly we con-
sider corrections to the saddle point approximation which is
valid in the long polymer limit. Let us expandfszd=Fszd
− fz, the argument of the exponential appearing on the right-
hand side of Eq.s4d around the saddle point valuez=z*
swhich dominates the integral in the long polymer limitd and
retain terms upto second order in the fluctuations about the
saddle point value:

fszd = fsz*d +
1

2
f9szduz=z*

sz − z*d2.

If we plug in this expansion in Eq.s4d and identifyZ̃sf ,bd
with e−bGsfd we arrive at the following equation:

Gsfd = fFsz*d − fz*g +
1

2b
ln F9sz*d. s10d

The free energy due to fluctuations around the saddle point
value is s1/2bdln F9sz*d. Notice that in the long polymer
limit of b→`, this term vanishes. For finiteb, this nonzero
contribution to the free energy accounts for the transition
between the constant extension ensemble and the constant
force ensemble. In going from a soft trap to a stiff trap work
is done on the bead by the trap. Similarly in going from a
stiff trap to a soft trap work is extracted from the bead by the
trap. The net work done is the difference between the work
done at the two ends of the force-extension curves in switch-
ing ensembles. This net work exactly cancels out the nonzero
area enclosed in the force-extension plane.

V. “FIRST-ORDER PHASE TRANSITION” AND THE
THERMODYNAMIC LIMIT IN SEMIFLEXIBLE

POLYMERS

In Sec. II we considered the bead to be in a potential
which was soft in thex andy directions. Let us now consider
what happens when the trap is stiff in all three directionsfA
as well asC in Eq. s1d are largeg and the vector position of
the bead is constrained to be atsx0,y0,z0d. Let QsrWd be the
number of polymer configurations which start at the origin
and end in the volume elementdrW centered atrW f11,18g. QsrWd
is related toPszd via the equation

Pszd =E drWQsrWddsr3 − zd, s11d

which, in words, means thatPszd is obtained by integrating
QsrWd over a plane of constantz f11g. The distribution
QsrWd was studied inf18g where it was noticed that in an
intermediate rangesaround 3.8d of b the free energyAsrWd
=s−1/bdln QsrWd had multiple minima. For a fixed contour
length as one variesb by tuning the persistence lengthLP
one finds a competition between flexible and rigid phases of
the polymer for intermediate values ofb. Thus the polymer
undergoes a flexible to rigid “first-order phase transition” via
a two peaked profile ofQsrWd. This leads to a curious force-
extension relation. As one pulls the bead, the restoring force
at first increases, then decreases to zero and then goes nega-
tive and becomes a destabilizing force. The molecule is un-
stable and goes to a new extended state.
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The words “first-order phase transition” above were in
quotes as a finite system does not show phase transitions. If
one takes the thermodynamic limit by taking the length of
the polymer to infinity sb→`d one loses the multiple
minima structure which is present only in a small range ofb
around 3.8. Is it possible for this phase transition to survive
the thermodynamic limit? As we will see below, this is in-
deed possible provided one takes the replica thermodynamic
limit. We takeN replicas of the molecule with fixedb and let
N tend to `. ConsiderN identical polymers withb=L /LP
fixed, their two ends anchored to flat surfacesS1 andS2 ssee
Fig. 2d. One could realize the above arrangement by usingsid
two planar arrays of optical traps orsii d by introducing suit-
ably synthesized supramolecular lamellar structures. The an-
choring is such that the tangent vectors to the molecule at the
fixed ends are free to swivel. If one applies a forceF to pull
S1 andS2 apart theN molecules are also stretched. We con-
sider the molecules to be well separated so that they can be
regarded as independent. One could now look at the mean
force F needed to maintain the separationr. It is easily seen
that the force is proportional toN and also the mean square
fluctuationksDFd2l in the force is proportional toN. This is
because the mean force and its variance are, respectively, the
first and second derivatives of the free energy, which being
an extensive quantity is proportional toN. It follows that as
N goes to infinity, the fluctuationssDF /Fd in F die out as
1/ÎN. We can now regard the mean forceF as a control
parametersi.e., consider a constantF ensembled and observe
that if we tune the applied forceF, there is a discontinuous
change in the separationr between the two sets of optical
traps signalling a first-order phase transition with the inter-
trap separationr as the order parameter. Thus, in the replica
way of taking the thermodynamic limit the double humped
form of the distribution functionQsrWd results in a true first-
order phase transition.

VI. DISCUSSION

In this paper we point out the importance of considering
the free energy of transition in going between the Helmholtz
and the Gibbs ensembles in the context of single molecule
force-extension measurements. We also study two distinct
ways of taking the thermodynamic limitsid by letting the
length of the polymer tend to infinitysi.e., b→`d andsii d by
considering replicas. In particular we notice that the flexible
to rigid transition mentioned in Sec. V for a single semiflex-
ible polymer survives the replica thermodynamic limit. In
contrast, this feature disappears in the usual thermodynamic
limit of b→`.

The nonmonotonic behavior ofQsrWd is an intriguing fea-
ture of molecular elasticity. It was noticed in recent simula-
tions f18g and subsequently in a semianalytical treatment
f11g. It was also commented on in a recent paperf19g. This
double humped form ofQsrWd has gained renewed interest in
the context of cyclization of polymers and its significance to
gene regulationf20,21g.

We note that this remarkable qualitatively distinctive fea-
ture is special to the isometric ensemblesfixed vector end-
to-end separationd and is not shared by other ensembles. In
other ensembles one can argue generally that such nonmono-
tonic behavior cannot occur. For example, the conjugate dis-

tribution P̃sFW d=eQsrWdeFW ·rWdrW is monotonic. This follows from
noticing that the 333 matrix

] ln P̃

]Fi ] Fj
= Šsr i − kr ildsr j − kr jld‹ s12d

is positive definite. Such arguments do not apply toQsrWd
since there is no analogous formula to Eq.s4d in the conju-
gate distribution. Indeed, if there were, a double humped
form could not appear inQsrWd, for one could express the
second derivative ofQsrWd as the variance of the force. Can
Pszd show nonmonotonic behavior? The answer is no, for it
has been shown inf11g that

− 2

z

dP

dz
= Qszd.

Since QsrWd is a probability density and therefore non-
negative, it follows thatdP/dzø0 for z.0, thus ruling out
multiple peaks inPszd. This argument which rules out mul-
tiple peaks inPszd is a new observation. Note that aPszd
measurement differs fromQsrWd only in the transverse stiff-
nessA of the trap. By tuningA we can permit fluctuations in
the transverse direction and therefore destroy the phase tran-
sition present in the stiffA limit. One would expect to see a
critical stiffnessA=Ac below which the phase transition is
destroyed. Alternately, one could tune the mean force and
expect to see the phase transition vanishing below a critical
mean forceF=Fc for a fixed value ofb in the intermediate
range ofb. We emphasize that the non-monotonic features of
QsrWd in the semiflexible rangeb<3.8 are predictions of the
WLC model which can be tested against experiments. A
single molecule with its ends confined in optical traps is
expected to show this flexible to rigid transition. The effect
can be dramatic however, if a large number of molecules
cooperatively show such a transition. One could attach the
ends of a collection of semiflexible polymers to supramo-
lecular layersf22g and detect the flexible to rigid transition
signaled by a change in the interlayer separation via a suit-
able probe. It may be possible to exploit this dramatic tran-
sition from flexible to rigid behavior in technological appli-
cations.

If one considers the replica thermodynamic limit of a
semiflexible polymer one sees that force-extension curves
continue to remain distinct in the Helmholtz and the Gibbs
ensembles. So while interpreting a force-extension curve ob-
tained for a collection of semiflexible polymers suspended

FIG. 2. Schematic experimental design for replica thermody-
namic limit, shown above forN=4
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between two arrays of traps, one needs to know if the curve
is obtained using the soft trap setup or a stiff trap setup.
However, forb→`, which is the usual thermodynamic li-
mit,the two ensembles give rise to thesameforce-extension
curve. This observation is consistent with the fact that in-
equivalence of ensembles can survive at the thermodynamic
limit for systems with long-range interactionsf7,8,23g. In the
context of semiflexible polymers, the persistence lengthLP
plays the role of the range of interactions. There has been
some workf24g on the thermodynamics of particle systems
in the presence of external macroscopic fields in classical
and quantal contexts. In these papers the authors have dealt
with the macroscopic limit of the definition of pressure
which is analogous to the thermodynamic limit of the defi-
nition of force in our work. In particular the authors of Ref.
f24g discuss the connection between the values of the pres-
sure defined by two different thermodynamic limit proce-
dures: in the first, the system is confined successively in a
sequence of boxes which grows to fill up the whole space. In
the second, the system is in an external potential similar to
the present context. In the case of a semiflexible polymer the
force corresponding to a given extension is the same in the
Gibbs and Helmholtz ensembles only in the thermodynamic
limit of b→`. This is analogous to the second procedure of

taking the thermodynamic limit given inf24g, where they
recover the thermodynamic notion of pressure from an un-
derlying microscopic definition when they let the scale factor
go to infinity in the macroscopic limit. The results of this
paper are therefore, consistent with the general treatment in
f24g.

The fluctuation effects mentioned here also have some
biological significance. In particular, the process of gene
regulation involves interaction between parts of a DNA mol-
ecule which are about less than one persistence length apart
s<34 nmd f21g. Over such short segments of the DNA fluc-
tuation effects would be significant. The replica thermody-
namic limit would also play a role in the concrete biological
context of a network of actin filaments forming the cytosk-
eletal structure.
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