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The gravitational radiation from point particle binaries is computed at the third post-Newtonian
(3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming
from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are
consistently determined by means of dimensional regularization, and proved to have the values � �
�9871=9240, � � 0, and � � �7=33. These results complete the derivation of the general relativistic
prediction for compact binary inspiral up to 3.5PN order, and should be of use for searching and
deciphering the signals in the current network of gravitational wave detectors.
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Astrophysical systems known as inspiralling compact
binaries (ICBs)—two neutron stars or black holes driven
into coalescence by emission of gravitational radiation—
are prominent observable sources for the gravitational
wave observatories LIGO and VIRGO. The appropriate
theoretical description of ICBs is by two structureless
point particles, characterized solely by their masses m1

or m2 (and possibly their spins), and moving on a quasi-
circular orbit. Strategies to detect and analyze the very
weak signals from compact binary inspiral involve
matched filtering of a set of accurate theoretical template
waveforms against the output of the detectors. Several
analyses [1–3] have shown that, in order to get suffi-
ciently accurate theoretical templates, one must include
high-order post-Newtonian effects, up to the third post-
Newtonian approximation (3PN, or �1=c6, where c de-
notes the speed of light), or even better the 3:5PN� 1=c7

one. To date, the templates have been completed through
2.5PN order (for both the phase [4] and amplitude [5]),
and the specific effects of gravitational wave tails, and
tails generated by tails themselves, have been added up to
the 3.5PN order [6].

Up to now the 3PN-accurate radiation field has only
been incompletely determined. Previous work at 3PN
order showed the appearance of ‘‘ambiguity parameters,’’
due to an incompleteness of the Hadamard regularization
(HR) employed for curing the infinite self-field of point
particles. By ambiguity parameter we mean an arbitrary
dimensionless coefficient whose value cannot be fixed
within HR. In the binary’s 3PN Arnowitt-Deser-Misner
Hamiltonian [7] there initially appeared two ambiguities,
the ‘‘kinetic’’ ambiguity !k and the ‘‘static’’ one !s,
while in the 3PN equations of motion in harmonic coor-
dinates [8] there appeared a single ambiguity parameter �
turning out to be equivalent to !s. The kinetic ambiguity
could be resolved by imposing the global Poincaré in-
variance of the formalism [8,9]. The ADM Hamiltonian
0031-9007=04=93(9)=091101(4)$22.50 
and harmonic-coordinates equations of motion have
been shown to yield completely equivalent results
[10,11]. More recent work using dimensional regulariza-
tion (DR) finally determined the static ambiguity to the
value !s � 0 [12] or, equivalently, � � �1987=3080
[13]. The same result was also obtained by means of a
surface-integral approach [14].

We are concerned here with the problem of the binary’s
3PN radiation field (beyond the Newtonian quadrupole
formalism), for which three ambiguity parameters, �, �,
� , have been shown to appear, coming from the HR of
the source-type mass quadrupole moment Iij of point
particle binaries at 3PN order [15]. The terms correspond-
ing to these ambiguities are given as follows (see
Eq. (10.25) in [15]),
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Here, GN is Newton’s constant, the factor 1=c6 indicates
the 3PN approximation, and y1, v1, a1 denote the first
particle’s position, velocity, and acceleration. The symbol
1 $ 2 means the same terms but with all particles’ labels
exchanged; the brackets h i surrounding indices refer to
the symmetric-trace-free (STF) projection.

In this Letter we present, for the first time, the values of
the parameters �, �, and � , and we outline their derivation
using DR (our detailed investigation will be reported
elsewhere). The main strategy is to express both the HR
and DR results in terms of their ‘‘core’’ part, obtained by
applying the so-called ‘‘pure-Hadamard-Schwartz’’
(pHS) regularization. (Following the definition of [13],
the pHS regularization is a specific, minimal Hadamard-
type regularization of integrals, together with a mini-
mal treatment of ‘‘contact’’ ambiguities, and the use of
2004 The American Physical Society 091101-1
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Schwartz distributional derivatives.) The first step of our
calculation is to relate the final HR 3PN quadrupole mo-
ment, for general orbits, to its pHS part:

I�HR�ij �r01; r
0
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Here, the left-hand side (lhs) denotes the (noncircular
generalization of the) result of [15], while the right-
hand side (rhs) contains both the core pHS quadrupole
moment, and the effect of adding the ambiguities (with
some numerical shifts coming from the difference be-
tween the hybrid Hadamard-type regularization scheme
used in [15] and the pHS one). The pHS part is free of
ambiguity parameters but depends on the specific regu-
larization length scales r01 and r02 introduced in the
harmonic-coordinates equations of motion [8].

The next step is to derive the multipole moments of an
isolated (slowly moving) source in d spatial dimensions
in order to apply DR. The Einstein field equations in d� 1
space-time dimensions are ‘‘relaxed’’ by means of the
condition of harmonic coordinates, @�h�� � 0, where the
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gravitational field variable is defined by h�� �
���
g

p
g�� �

���, with g�� being the inverse and �g the determinant
of the usual covariant metric, and with ��� the
Minkowski metric (in Minkowskian coordinates). Then,

��h�� �
16�G

c4
gT�� �����h� �

16�G

c4
���; (3)

where �� denotes the flat space-time d’Alembertian op-
erator, T�� the matter stress-energy tensor, ��� the ef-
fective gravitational source term (nonlinearly depending
on h ! and its space-time derivatives), and ��� the total
stress-energy pseudotensor of the matter and gravita-
tional fields. G is related to the usual three-dimensional
Newton’s constant GN by G � GN‘

d�3
0 , where ‘0 denotes

an arbitrary length scale. We have obtained the mass and
current multipole moments (IL and JL) of an arbitrary
post-Newtonian source, generalizing the three-
dimensional expressions derived in [16] to any d dimen-
sions. The moments IL and JL parametrize the linearized
approximation in the multipolar-post-Minkowskian met-
ric exterior to an isolated source [17]. In the case of the
mass-type moments we find
IL�t� �
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�x; t�; (4)
where L � i1 � � � i‘ is a multi-index composed of ‘ spatial
indices (‘ � 2 is the multipolar order), x̂L is the STF part
of the product of ‘ spatial vectors [i.e., x̂L �
STF�xi1 � � � xi‘�], and the time derivatives are denoted by
a superscript �n�. The integrand in (4) is made out of the
source densities �c2 � 2��d� 2��00 � �ss�=�d� 1�,
�ac � �a0 and �ab � �ab, built from the formal post-
Newtonian expansion, denoted ���, of the pseudotensor
���. For any of these source densities the subscript �‘�
denotes the infinite post-Newtonian-type expansion
��‘��x; t� �

P
�1
k�0 *

k
‘�jxj=c�

2k��2k��x; t�, where the coeffi-
cients are related to the Eulerian � function by *k‘ �
��d2 � ‘�=�22kk!��d2 � ‘� k��. The expression (4) involves
a regularization factor �jxj=r0�B, where B 2 C and r0 is a
separate ‘‘infrared’’ (IR) length scale, and a particular
process of taking the finite part (FPB), which constitutes
the appropriate d-dimensional generalization of the finite
part process used in [16] to treat the IR divergencies of
the PN-expanded multipole moments (linked to the re-
gion jxj ! �1). Since the source densities �, �a, and
�ab depend on the post-Newtonian expansion of the
metric, h��, they are obviously to be iterated in a post-
Newtonian way in order to obtain a useful result. At the
3PN order it is convenient to parametrize the moments by
means of the explicit retarded potentials V, Va, Ŵab, R̂a,
and X̂, introduced when d � 3 in [8] and generalized to d
dimensions in [13]. At Newtonian order the expression (4)
reduces to the standard result IL �

R
ddx x̂L �O�c�2�

with  � T00=c2.
We have used Eq. (4) to compute the difference be-

tween the DR result and the pHS one. As in the work on
equations of motion [12,13], we find that the ambiguities
arise solely from the terms in the integration regions near
the particles (r1 � jx� y1j ! 0 or r2 � jx� y2j ! 0)
that give rise to poles / 1=" (where " � d� 3), corre-
sponding in three dimensions to logarithmic ultraviolet
(UV) divergencies. We have verified (thanks to the appro-
priate definition of the finite part process FPB) that the IR
region (jxj ! �1) did not contribute to the difference
DR–pHS. The ‘‘compact-support’’ terms in the integrand
of (4), i.e., the terms proportional to the matter source
densities !, !a, and !ab, were also found not to contrib-
ute to the difference (thanks to the definition of contact
terms in pHS [13]). We are therefore left with evaluating
the difference linked with the computation of the non-
compact terms in the local expansion of the integrand in
(4) near the singularities (i.e., r1 ! 0 and r2 ! 0) that
produce poles in d dimensions. Let us denote by F�d� the
noncompact part of the integrand of the d-dimensional
multipole moment (4) (including the appropriate multi-
polar factors such as x̂L), that is to say, we write the
noncompact part of IL as the integral

R
ddxF�d�, extended,
091101-2



VOLUME 93, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S week ending
27 AUGUST 2004
say, over two small domains 0< r1 <R1, 0< r2 <R2.
[At this stage we can set B � 0 in F�d�, and remove the
FPB prescription.] We write the expansion of F�d� when
r1 ! 0, up to any order N, in the form (cf. [13])

F�d��x� �
X
p;q

rp�q"1 1f
�"�
p;q�n1� � o�rN1 �; (5)

where p; q are relative integers, and n1 � �x� y1�=r1.
In practice the 1f

�"�
p;q’s are computed by specializing the

general expressions of the nonlinear retarded potentials
V, Va, Ŵab, � � � (valid for general extended sources) to
point-particle binaries in d dimensions. The matter
source density reads ! � ~�1�t�6

�d��x� y1� � 1 $ 2,
where 6�d� is Dirac’s delta function in d dimensions,
and ~�1�t� denotes a certain function of time, coming
from the standard prescription for point particles in
general relativity, and which is computed in an iterative
post-Newtonian way. The function ~�1 depends on the
potentials V, Va, � � � , evaluated at the location of the
singular points following the rules of DR, i.e., by invok-
ing analytic continuation in d 2 C. We PN expand the
(time-symmetric) propagators. For instance, at the 1PN
order, we use ��1 � �1 � 1

c2
�2@2t �O�c�4�, which

yields the solution V � ��1��4�G!� � G ~�1
~kr2�d1 �

@2t �G ~�1
~kr4�d1 =2c2�4� d�� � 1 $ 2�O�c�4�, where we

denote ~k � ��d�2
2 �=��d�2�=2. Proceeding further, we in-

sert the previous solution for V into the quadratic part of
the source term for Ŵab (whose structure is �@V@V),
expand it when r1 ! 0, and then integrate term by term in
order to find the local expansion (when r1 ! 0) of the
corresponding solution, using the integration formula
�1�n̂L1 r

*
1 �� n̂L1 r

*�2
1 =��*�‘�2��*�‘�d��. We gen-

erate by this method a particular solution of the Poisson-
like equation we want to solve, and we added the supple-
mentary homogeneous solution defined in Ref. [13],
whose programs we have reused for the present work.

The difference DI between the DR evaluation of the
(d-dimensional) local integral

R
ddxF�d��x�, and its cor-

responding, three-dimensional pHS evaluation, i.e., the
‘‘partie finie’’ Pfs1;s2

R
d3xF�d�3��x�, is expressible in

terms of the expansion coefficients of (5) as (see also [12])

DI�s1; s2; "; ‘0� �
�2�"

"

X
q

�
1

q� 1
� " lns1

�

�h1f
�"�
�3;q�n1�i � 1 $ 2�O�"�; (6)

where the brackets denote the angular average over the
unit sphere in 3� " dimensions (with total volume �2�")
centered on the singularity y1. The lhs depends both on
the regularization length scales s1; s2 of the Hadamard
partie finie, and on the DR regularization characteristics,
" � d� 3 and ‘0.

With this definition, the dimensional regularization of
the 3PN quadrupole moment (indices L � ij) is obtained
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as the sum of its ‘‘pure-Hadamard-Schwartz’’ part, and
of a ‘‘difference’’ computed according to Eq. (6):
I�DR�ij �"; ‘0� � I�pHS�ij �s1; s2� �DIij�s1; s2; "; ‘0�: At this
stage a check of the result is that the HR scales s1 and
s2 cancel out between the two terms in the rhs, so that
I�DR�ij depends only on " and ‘0 [its dependence on " is of
the form of a simple pole followed by a finite part,
a�1"�1 � a0 �O�"�]. Because of this independence
from s1, s2, we can express our result in terms of the
constants r01 and r02 used as fiducial scales in the final
result of [15], see Eq. (2). We can therefore write the DR
result as

I�DR�ij �"; ‘0� � I�pHS�ij �r01; r
0
2� �DIij�r01; r

0
2; "; ‘0�: (7)

Let us now impose the physical equivalence between
the DR result (7) and the corresponding HR result (2). In
doing this identification, we must remember that the
‘‘bare particle positions,’’ ybare1 and ybare2 , entering the
DR result differ from their Hadamard counterparts
(used in [8,15]) by some shifts, which were uniquely
determined in [13], and denoted there �1�r01; "; ‘0� and
�2�r02; "; ‘0� [see Eqs. (1.13) and (6.41)–(6.43) in [13] ]. In
the present work, we will denote them by �1 and �2 in
order to avoid any confusion with the ambiguity parame-
ter �. In other words, we impose the equivalence

I�HR�ij �r01; r
0
2;�; �; �� � lim

"!0
�I�DR�ij �"; ‘0� � 6��r01r

0
2;";‘0�

Iij�;

(8)

in which 6�Iij � 2m1y
hi
1�

ji
1 � 1 $ 2 denotes the total

change induced on the quadrupole moment by the latter
shifts. We find that the poles �1=" separately present in
the two terms in the brackets of (8) cancel, so that the
physical (‘‘dressed’’) DR quadrupole moment is finite and
given by the limit shown in (8).

Finally, by inserting the expressions of the DR and HR
results given, respectively, by (7) and (2) into Eq. (8), and
by removing the pHS part which is common to both
results, we obtain a relation for the ambiguity part Iij
of the quadrupole moment in (2) in terms of known
quantities,

Iij
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1
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: (9)

The apparent dependence of the rhs on r01, r02, ", and ‘0, is
checked to cancel out. Equation (9) then gives three
equations for the three unknowns �; �; � , thereby yield-
ing the central result of this work:

� � �
9871

9240
; � � 0; � � �

7

33
; (10)
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which finally provides an unambiguous determination of
the 3PN radiation field by DR.

We have been able to perform several checks of our
calculation. First of all, we have also obtained � by
considering the limiting physical situation where the
mass of one of the particles is exactly zero (say m2 �
0), and the other particle moves with uniform velocity.
Computing the quadrupole moment of a boosted
Schwarzschild black hole at 3PN order and comparing
the result with I�HR�ij in the limit m2 � 0 we recover
exactly the same value for � . This agreement is a direct
verification of the global Poincaré invariance of the wave
generation formalism, and a check that DR automatically
preserves this invariance (as it did in the context of the
equations of motion [12,13]). Second, the fact that the
value of � is zero has been checked by showing that there
are no corresponding dangerously divergent ‘‘diagrams’’
(in the sense of [18]). Finally, we have computed the DR
of the mass dipole moment, I�DR�i , following the same
method and using the same computer programs, and
found that it differs by exactly the same shifting of the
world lines, �1�r

0
1; "; ‘0� and �2�r

0
2; "; ‘0�, as in Eq. (8),

i.e., 6�Ii � m1�
i
1 � 1 $ 2, from the 3PN center-of-mass

position associated with the equations of motion in har-
monic coordinates as given by Eq. (4.5) of [11]. Those
checks, together with previous ones and comparisons
with other methods [12–14], confirm both the consistency
of DR, and its validity for describing the dynamics of
compact bodies.

The determination of the values (10) completes the
problem of the general relativistic prediction for the
templates of ICBs up to 3PN order (and actually up to
3.5PN as the corresponding ‘‘tail terms’’ have already
been determined [6]). The relevant combination of the
parameters (10) entering the 3PN energy flux in the
case of circular orbits, namely 7 [15], is now fixed to

7 � �� 2�� � � �
11831

9240
: (11)

Numerically, 7 ’ �1:280 41. The orbital phase of com-
pact binaries, in the adiabatic inspiral regime (i.e., evolv-
ing by radiation reaction), involves at 3PN order a linear
combination of 7 and of the equation-of-motion related
parameter � [19], which is determined as

7̂ � 7�
7

3
� �

1039

4620
: (12)

The fact that the numerical value of this parameter is
quite small, 7̂ ’ 0:224 89, indicates, following
measurement-accuracy analyses [3], that the 3PN (or
better 3.5PN) order should provide an excellent approxi-
mation for both the online search and the subsequent
091101-4
offline analysis of gravitational wave signals from ICBs
in the LIGO and VIRGO detectors.
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