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We consider spin glass models in which the number of spin componentsm is infinite. In the formulation of
the problem appropriate for numerical calculations proposed by several authors, we show that the order
parameter defined by the long-distance limit of the correlation functions is actually zero and there is only
“quasi-long-range order” below the transition temperature. Nonetheless, there can be a finite temperature phase
transition where the decay of correlations changes from exponential to power law. We also show that the spin
glass transition temperature is zero in three dimensions so power-law behavior only occurs atT=0 in this case.
We also argue that the order of limits,m→` andN→` is important, whereN is the number of spins.
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I. INTRODUCTION

It is of interest to study a spin glasssSGd model in which
the number of spin componentsm is infinite, because it pro-
vides some simplifications compared with Isingsm=1d or
Heisenbergsm=3d models. For example, in mean fieldsMFd
theorysi.e., for the infinite range modeld there is no “replica
symmetry breaking”f1g so the ordered state is characterized
by a single order parameterq, rather than by an infinite num-
ber of order parametersfencapsulated in a functionqsxdg
which are neededf2g for finite m.

There has recently been renewed interestf3,4g in the m
=` model, and the interesting result emerged from these
studies that theeffectivenumber of spin components depends
on the system sizeN and is only really infinite in the ther-
modynamic limit. One motivation for the present study is to
investigate some consequences of this result.

Further motivation for our present study comes from ear-
lier work by two of usf5g which argued that the isotropicXY
sm=2d and Heisenberg spin glasses have a finite spin glass
transition temperatureTSG in three dimensions, like the Ising
spin glass. The results of Ref.f5g also indicate thatTSG is
very low compared with the mean field transition tempera-
ture TSG

MF anddecreaseswith increasingm; see Table I. The
data in Table I suggest thatTSG/TSG

MF may be zero in them
=` limit in three dimensions, and we investigate this possi-
bility here.

In this paper, we study them=` SG model; both the
infinite range version and the short-range model in three and
two dimensions. We find that we need to carefully specify
the order in which the limitsm→` and the thermodynamic
limit N→` are taken. In Ref.f1g, the N→` limit is taken
first ssince a saddle-point calculation is performedd and the
m→` limit is taken at the end. However, in the formulation
of them=` problem which has been proposed for numerical
implementation in finite dimensionsf3,4,8,9g and which we
use here, the limitm→` is taken first for a lattice of finite

size. In the latter case, we find that forT,TSG the spin glass
correlations decay with apowerof the distancer and tend to
zero for r →`, so the order parameter, defined in terms of
the long-distance limit of the correlation function, is actually
zero. Nonetheless, there can still be a transition atTSG sepa-
rating a high temperature phase, where the correlations decay
exponentially, from the low temperature phase where they
decay with a power law. In particular for the infinite range
model TSG=TSG

MF=1. By contrast, if one takesN→` first
with m finite, the power law decay eventually changes to a
constantsof order of 1/md at larger and so, multiplying by
m, a nonzero spin glass order parameter can be defined,
which is equivalent to that of Ref.f1g.

Overall we conclude that to obtain sensible physical re-
sults, the limitN→` should be takenfirst. As a result, the
approach of Refs.f3,4,8,9g, which performs them→` limit
first, should be considered as the zeroth order term in a 1/m
expansion which needs to be resummedf10g in order to get
results for large butfinite m. The latter would avoid the in-
consistencies in the strictlym=` results.

We give phenomenological arguments for these conclu-
sions and back them upsfor the case wherem→` is taken
firstd by numerical results at zero temperature. We also find,
from numerical results at finite temperature, thatTSG/TSG

MF

=0 in three dimensions form=`, consistent with the trend of
the results in Table I.

In Sec. II we discuss the model and the methods used to
study it numerically. In Sec. III we describe our results at
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TABLE I. Estimates of the spin glass transition temperature,
relative to the mean field value,TSG

MF=Îz/m, see Eq.s2d, for differ-
ent values ofm for the three-dimensional simple cubic lattice
sz=6d. The factor of 1/m in TSG

MF appears because the spins were
normalized to unity in Refs.f5–7g, rather than tom1/2 as here. For
the model used in this paper,TSG

MF is finite for m→`.

m Model TSG
MF TSG TSG/TSG

MF

1 Ising 2.45 0.97f6,7g 0.40

2 XY 1.22 0.34 f5g 0.28

3 Heisenberg 0.82 0.16f5g 0.20
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T=0 for both short-range and the infinite-range model, while
in Sec. IV we describe finite temperature results for short-
range models. Our conclusions are summarized in Sec. V.

II. MODEL AND METHOD

We take the Edwards-Andersonf11g Hamiltonian

H = – o
ki,jl

JijSi ·Sj , s1d

where the spinsSi si =1,… ,Nd are classical vectors withm
components and normalized to lengthm1/2, i.e., Si

2=m. As
we shall see, this normalization is necessary to get a finite
mean-field transition temperature in them=`. The Jij are
independent random variables with a Gaussian distribution
with zero mean. We consider both the infinite range model
and short-range models with nearest-neighbor interactions in
two and three dimensions. For the infinite range model, the
standard deviation is taken to be 1/ÎN−1 while for the
short-range models the standard deviation is set to be unity.
According to the mean field approximation, the spin glass
transition temperature is

TSG
MF =

kSi
2l

m Fo
j

Jij
2G

av

1/2
, s2d

wheref¯gav indicates an average over the disorder. Hence,
for the infinite range modelswhere mean field theory is ex-
actd, Eq. s2d gives TSG=TSG

MF=1, while for the short-range
case it givesTSG

MF=Îz, where z is the number of nearest
neighborssfour for the square lattice and six for the simple
cubic latticed.

As shown in other workf3,4,8,9g, the problem can be
simplified for m=`. The spin-spin correlation function,

Cij ;
1

m
kSi ·Sjl, s3d

is given by

T−1Cij = sA−1di j , s4d

where

Aij = Hidi j − Jij , s5d

and theHi have to be determined self consistently to enforce
son averaged the length constraint on the spins,

Cii = 1. s6d

Angular brackets,k¯l, refer to a thermal average for a given
set of disorder. Equations6d with i =1,… ,N representsN
equations which have to be solved for theN unknownsHi. In
Sec. IV we will solve these equations numerically for a range
of sizes at finite temperature. We emphasize that in Eqs.
s3d–s6d the limit m→` has been taken withN finite. This is
the opposite order of limits from that in the analytical work
of Ref. f1g where N→` was taken beforem→`. As we
shall see, the results from the two orders of limits are differ-
ent.

Equationss3d–s6d are not well defined atT=0. However,
Aspelmeier and Mooref4g pointed out that one can solve the

m=` problemdirectly at T=0, using the following method.
At zero temperature there are no thermal fluctuations so each
spin lies parallel to its local field, i.e.,

Si = Hi
−1o

j

JijSj , s7d

where m1/2Hi is the magnitude of the local field on sitei.
Remarkably, it was shown by Hastingsf3g that these local
fields are precisely the zero temperature limit of theHi in Eq.
s5d. Hastingsf3g also showed that the average number of
independent spin components which are nonzero in the
ground state, which we callm0, cannot be arbitrarily large,
but satisfies the bound

m0 , Î2N. s8d

This means that one can always perform a global rotation of
the spins such that onlym0 components have a nonzero ex-
pectation value and the remainingm−m0 components van-
ish. Thus one can think ofm0 as theeffective number of spin
components. If m is finite, then, at some value ofN, m0
would equal the actual number of spin componentsm. At this
point, all spin components are used som0 “sticks” at the
valuem asN is further increased; see Fig. 1.

More generally we can write Eq.s8d as

m0 , Nm sm0 , md s9d

and the bound in Eq.s8d givesmø1/2. Later, we will deter-
mine m numerically for several models. For Eqs.s3d–s6d to
be valid we needm.m0 which corresponds to the curved
part of the line in Fig. 1. As discussed above, this corre-
sponds to taking the limitm→` first, followed by the limit
N→`. Sincem0 increases withN one needs larger values of
m for larger lattice sizes. This will be important in what
follows.

We therefore see that we can numerically solve them
=` problem atT=0 on a finite lattice by taking a number of

FIG. 1. A plot of the average effective number of spin compo-
nents,m0, as a function of system sizeN for a fixed, finite number
of spin componentsm. For smallN, m0,Nm, but oncem0 hits the
actual number of spin componentsm, it sticks atm asN is further
increased.
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spin components which isfinite but greater thanm0, and
solving Eqs.s7d. To do this we cycle through the lattice, and
at sitei, say, we calculateHi from

Hi =
1

m1/2Uo
j

JijSjU . s10d

we then setSi to the value given by Eq.s7d so it lies parallel
to its instantaneous local field. This is repeated for each site
i, and then the whole procedure is iterated to convergence.
Although spin glasses with finitem have many solutions of
Eqs. s7d, it turns out that form=` sin practice this means
m.m0d there is a unique stable solutionf12g, so the numeri-
cal solution of Eqs.s7d is straightforward. We will discuss
our numerical results atT=0 using Eqs.s7d in Sec. III, and
here we simply note that we do indeed find a unique solution
of these equations.

Next we consider the order parameter in spin glasses for
m=`. In the absence of a symmetry breaking field, one de-
fines the long range order parameterq by the behavior of the
spin-spin correlation functionfCij

2gav at large distances, i.e.,

q2 = lim
Rij→`

fCij
2gav sshort ranged, s11d

where Rij = uRi −R ju. For the infinite-range model, any dis-
tinct pair of sites will do, and so

q2 = fCij
2gav si Þ jd sinfinite ranged. s12d

We now give phenomenological arguments, which will be
supported by numerical data in Sec. III, thatq obtained from
Eqs. s11d and s12d, in which Cij is determined by Eqs.
s3d–s6d, is actually zero for m=`, and that, at best, spin
correlations have only “quasi-long-range order.” For the
short range case, this means thatfCij

2gav decays with a power
of the distanceRij , while for the infinite range model the
correlation function in Eq.s12d tends to zero with a power of
N.

To see why this is the case, we takeT=0 and consider
first the infinite-range model. For a givenN, the spins “splay
out” in m0,Nm directions. We expect the spins to point, on
average, roughly equally in all directions in this
m0-dimensional space. NowCij in Eq. s3d is equal to cosui j
whereui j is the angle betweenSi andSj. We take the square
and average equally over all directions. To do the average,
take a coordinate system with the polar axis alongSi, so
ui j =u j the polar angle ofSj. Then we have

q2 = fCij
2gav = kcos2 u jl =

1

S2kSz
2l ,

1

m0

o
a=1

m0

kSa
2l

S2 =
1

m0
, N−m,

s13d

where we used the result that the average is roughly the same
for all the m0 spin components. Sincem will turn out to be
nonzero it follows thatthe order parameter tends to zero
with a power of the size of the system. The same will be true
at temperaturesT,TSG, while aboveTSG the order parameter
as defined here will vanish faster, as 1/N.

How can we reconcile this vanishing order parameter with
earlier resultsf1g that the order parameter in the infinite-
range model is nonzero belowTSG=1, and in particular is
unity at T=0. The difference comes in part becauseq2 in
Ref. f1g, which we callqAJKT

2 , is m times ourq2, and so

qAJKT
2 = mq2 ,

m

m0
sT = 0d. s14d

Note that since we takem→`, the difference betweenq and
qAJKT is not just a “trivial” scale factor. More precisely, since
m is taken to infinity before N→`, m0 is just an
N-dependent constant and the right-hand side of Eq.s14d
does not existwith this order of limits. However, Ref.f1g
performs the limitN→` first, for which m0=m, see Fig. 1,
and the limit of Eq.s14d is well defined ifm is then allowed
to tend to infinity. Hence the difference between our results
and those of Ref.f1g is that they takeN→` first, whereas
we takem→` first.

Going back to the calculation ofCij , if one sumsfCij
2gav

for the infinite range model over all pairs of sites we find that
the spin glass susceptibilityxSG at T=0 is given by

xSG=
1

N
o
i,j

fCij
2gav = 1 + sN − 1dq2 . Nq2 , N1−m. s15d

Turning now to the short-range case, we expect thatxSG
,N1−m will still be true, which implies that correlations de-
cay with a power of distance. Assuming thatfCij

2gav,1/Rij
y

for some exponenty, then integrating over allr up to r =L
swhere N=Ldd and requiring that the result goes asN1−m,
givesy=dm, i.e.,

fCij
2gav ,

1

Rij
dm . s16d

Such power law decay is often called quasi-long-range
order. We expect that Eq.s16d will be true quite generally at
T=0 and everywhere belowTSG if TSG.0. Note that this
implies thatq=0 according to Eq.s11d. Above TSG, fCij

2gav

will decay to zero exponentially with distance.
If m is large but finite, thenfCij

2gav will saturate whenRij

is sufficiently large that all the spin components are used.
This happens whenfCij

2gav,1/m, i.e., forRij *m1/dm. In this
case,qAJKT

2 =mq2 will be finite according to Eq.s11d. Al-
though, according to our definition,q is always zero, there
can be a finite temperature transition atT=TSG which sepa-
rates the regionT.TSG where correlations decay exponen-
tially, from the regionT,TSG where correlations decay with
a power law. Mathematically this is the same behavior as
occurs in the Kosterlitz-Thouless-Berezinskii theory of the
two-dimensionalXY ferromagnet.

In Secs. III A and III B we will provide numerical support
for Eq. s15d for the infinite-range and short-range cases, re-
spectively.

III. RESULTS AT ZERO TEMPERATURE

A. Infinite range model

We consider a range of lattice sizes up toN=2048 and for
each size the number of samples is shown in Table II.
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The average number of nonzero spin components in the
ground state is given by Eq.s9d, for which it has been shown
that f3,4g

m = 2/5 sinfinite ranged s17d

exactly. This result has been confirmed numericallyf4g. Our
results form are shown in Fig. 2 and indeed givem close to
2/5. The small deviation is presumably due to corrections to
scaling.

We also calculatedq2 at T=0 from Eq.s12d. In Eq.s3d the
thermal average,k¯ l, is unnecessary, and the spin direc-
tions are determined by solving Eqs.s7d ands10d. The results
for are shown in Fig. 3, showing that it vanishes with expo-
nent −m as a function ofN, as expected from Eq.s13d.

B. Short-range models

First of all we describe our results for three dimensions.
The number of samples is shown in Table III.

Our results form are shown in Fig. 4, indicating thatm
.0.33, definitely different from the infinite range result of
2/5. The results forxSG as a function ofN are shown in Fig.
5. We see thatxSG grows with an exponent 1−m with the
same value ofm as in Fig. 4. We therefore find thatdm
.1.0, and so, from Eq.s16d, the spin glass correlations de-
cay as

fCijgav
2 ,

1

Rij
sd = 3,T = 0d. s18d

sIt is of course possible that power ofRij may not be exactly
21.d

Next we describe our results for two dimensions. The
number of samples used is shown in Table IV. Our results for
m are shown in Fig. 6, and givem.0.29. The data forxSG
are shown in Fig. 7. We see thatxSG increases asN1−m with

TABLE II. Number of samples used in theT=0 studies of the
infinite range model.

N Nsamp

32 1000

64 1000

128 1000

256 1000

512 1000

1024 777

2048 302

TABLE III. Number of samples used in the calculations for the
short-range model in three dimensions.

T=0 T.0

L Nsampsm0d NsampsxSGd Nsamp

3 1000

4 1000 1000 100

6 1000 1000 100

8 1000 1000 100

10 1000

12 1105 1105 100

16 785 785

24 500

FIG. 2. The average number of nonzero spin components in the
ground statem0 as a function ofN for the infinite range model. We
see thatm0 increases likeNm with m close to 2/5 as expected.

FIG. 3. The square of the order parameter atT=0 for infinite
range model. As expected, it decreases likeN−m with m=2/5.
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the samem as determined from Fig. 6. We therefore find that
dm.0.58, and so, from Eq.s16d, the spin glass correlations
decay as

fCijgav
2 ,

1

Rij
0.58 sd = 2,T = 0d. s19d

IV. RESULTS FOR SHORT-RANGE MODELS AT FINITE
TEMPERATURE

We have determined finite temperature properties by solv-
ing Eqs.s4d–s6d self-consistently using the Newton-Raphson
method. We start at high temperature,T=T1 say, and take our
initial guess to beHi =1/b which is the solution obtained
perturbatively to first order in 1/T. We then solve the equa-
tions at successively lower temperatures,T1.T2.T3

TABLE IV. Number of samples used in the calculations for the
short-range model in two dimensions.

T=0 T.0

L Nsampsm0d NsampsxSGd Nsamp

4 1000 1000 1000

6 1000 1000 1000

8 1000 1000 1000

10 1000

12 1000 1000 1000

14 1000

16 1000 1000 1000

18 1000

20 1000

22 1000

24 1000 500

28 1000

32 1000 1000 309

48 472 136

64 1016 1016
FIG. 4. The average number of nonzero spin components in the

ground statem0 as a function ofN for the short-range model ind
=3. We see thatm0 increases likeNm with m.0.33.

FIG. 5. The spin glass susceptibility for the short-range model in
d=3 for different system sizes. As expected it varies asN1−m, where
m.0.33 was also found in Fig. 4.

FIG. 6. The average number of nonzero spin components in the
ground statem0 as a function ofN for the short-range model ind
=2. We see thatm0 increases likeNm with m.0.29.

SPIN GLASSES IN THE LIMIT OF AN INFINITE… PHYSICAL REVIEW E 71, 036146s2005d

036146-5



.T4¯, and obtain the initial guess for theHi at temperature
Ti+1 by integrating the equationss4d

dHi

db
= − o

j
sB−1dij , s20d

in which

Bij = sbCijd2, s21d

from bi to bi+1 sb=1/Td.
Results forxSG in d=3 are shown in Fig. 8, in which we

scaled the vertical axis byLds1−md s=L2d so the data collapse
at T=0. If we assume a zero temperature transition, the data
should fit the finite-size scaling form

xSG= Lds1−mdXsL1/nTd, s22d

whereXsxd→const forx→0, and the power law prefactor in
front of the scaling functionXsxd then gets theT=0 limit
correct. Figure 9 shows an appropriate scaling plot withn
=1.23. Apart from the smallest size,L=4, the data clearly
collapse well. By considering different values ofn we esti-
mate

n = 1.23 ± 0.13 sd = 3d. s23d

This result can be compared with that of Morriset al. f9g
who quoten=1.01±0.02. Since our results cover a larger
range of sizes and have better statistics, we feel that the error
bars of Morriset al. are too optimistic. Assuming this, our
result is consistent with theirs.

We should, however, also test to see if the data can be
fitted with a finite value forTSG. To do this, it is convenient
to analyze the correlation length of the finite system,jL, and
plot the dimensionless ratiojL /L which has the expected
scaling formf5,13g

FIG. 7. The spin glass susceptibility for the short-range model in
d=2 for different system sizes. As expected it varies asN1−m, where
m.0.29 was also found in Fig. 6.

FIG. 8. The spin glass susceptibility as a function of temperature
in three dimensions. The vertical axis has been divided byLds1−md,
in which we took m=1/3 in order to collapse the data atT=0
according to the data in Figs. 4 and 5.

FIG. 9. A scaling plot of the spin glass susceptibility in Fig. 8
assuming a zero temperature transition.
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jL

L
= F„L1/nsT − TSGd… s24d

without any unknown power ofL multiplying the scaling
functionF. Hence the data for different sizes should intersect
at TSG and also splay out belowTSG. To determinejL we
Fourier transformfCij

2gav to getxSGskd and then usef5,13g

jL =
1

2 sinskmin/2d
S xSGs0d

xSGskmind
− 1D1/2

, s25d

where kmin=s2p /Lds1,0,0d is the smallest nonzero wave
vector on the lattice.

The results are shown in the main part of Fig. 10. The
data do not intersect at any temperature, but seem to be ap-
proaching an intersection atT=0 for the larger sizes. To test
out this possibility, we have computed the correlation length
directly atT=0, from the solution of Eqs.s7d ands10d, where
we can study larger sizes than in the finite-T formulation of
Eqs. s3d–s6d. The data are shown in the inset of Fig. 10. It
indicates, fairly convincingly, thatjL /L approaches a con-
stant forL→` at T=0, and hence that there is a transition at
T=0.

In d=2 it is well established thatTSG=0 even for the Ising
case. A scaling plot forxSG for m=` in d=2, corresponding
to Eq.s22d, is shown in Fig. 11 withn=0.72, which gives the
best data collapse for larger sizes, andds1−md=1.42 which
is obtained from theT=0 results in Sec. III. Again the data
scale well. Overall we estimate

n = 0.72 ± 0.05 sd = 2, from xSGd. s26d

This is consistent with the results in Morriset al. f9g who
quoten=0.65±0.02.

We have also computed the correlation lengthjL /L in two
dimensions, and show the data in Fig. 12. The curves be-
come independent of size, for largeL, at T=0, confirming
that TSG=0. A scaling plot of the data for the largest sizes
sLù24d in Fig. 13 has the best data collapse withn=0.65
and altogether we estimate

n = 0.65 ± 0.05 sd = 2, from jL/Ld, s27d

which is consistent with our estimate fromxSG in Eq. s26d,
and with the result of Morriset al. f9g.

V. CONCLUSIONS

We have considered the spin glass in the limit where the
spins have an infinite number of components. In the formu-
lation of this problem appropriate for numerical calculations
f3,4,8,9g, where the limitm→` is taken withN finite, we
find that the order parameter, defined in terms of correlation
functions in zerossymmetry-breakingd field, vanishes. In-
stead, belowTSG, there is only quasi-long-range order in
which the correlations decay to zero with a power of dis-
tance. The transition temperatureTSG can be finite; it sepa-
rates the region at low temperature, where the correlations
decay with a power of the distance, from the region at high
temperature where correlations decay exponentially.

Whereas we define the order parameter in terms of the
long distance limitof the correlation functions, Aspelmeier
and Mooref4g define alocal order parameter in terms of the
contribution to the constraint in Eq.s6d that comes from the
eigenmodes with zero eigenvalue of the matrixAij . They
argue their order parameter is related to the susceptibility in
the presence of a small fieldh, where the limitN→` is

FIG. 10. The main figure is a plot ofjL /L againstT in three
dimensions. The inset showsjL /L at T=0 as a function ofL. The
dashed line is a guide to the eye.

FIG. 11. A scaling plot of the data forxSG in two dimensions,
assuming a zero temperature transition. In the vertical axis,xSG is
divided byLds1−md.L1.42 so that the data collapse atT=0.
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taken before the limith→0 in order to break the symmetry.
From numerics on the infinite-range model, Aspelmeier and
Moore claim that their order parameter agrees with that of
Almeida et al. f1g.

However, in a sensible physical model,any reasonable
definition of the order parameter should give the same an-
swer. In particular, one should be able to obtain the square of
the order parameter from the long distance limit of the cor-
relation function soff-diagonal long range orderd in zero
field, and get the same answer as the local expectation value
of the spin in the presence of a small symmetry breaking
field. This does not appear to be the case for them=` model
if the limit m→` is taken beforeN→`.

On the other hand, if the thermodynamic limit,N→`, is
taken withm large but finite, then the correlations saturate at
a value of order 1/m at large distance, and so a finite spin
glass order parameter can be defined from the long distance
limit of the correlation functions. This seems to agree with
the order parameter found in the analytical work of Ref.f1g,
and is presumably the same as the local order parameter in a
symmetry breaking field. Hence there seems to be no incon-
sistency if the limitN→` is taken first.

We have also studied them=` model in three dimen-
sions, finding the transitionswhere correlations change from
exponential to power lawd to be at zero temperature, in con-
trast to the situation forf5,13g m=1, 2, and 3. We suspect
that TSG=0 only in them=` limit, rather than for allm less
than somesnonzerod critical valuemc, since spin glasses with
m=` seem to have unique features. For example, we have

already mentioned that there is only quasi-long-range order
below TSG in this case, in contrast to finitem. Another ex-
ample of the special features of them=` limit is that Green
et al. f14g find the upper critical dimension, above which the
critical exponents are mean field like, to bedu=8, whereas
for finite m one hasdu=6. Our result thatTSG=0 for m=` in
d=3 is consistentwith the claim of Vianaf15g that the lower
critical dimensionsbelow which TSG=0d is also dl =8, but
currently we cannot say anything specific about dimensions
above 3.

We find, not surprisingly, thatTSG=0 also in two dimen-
sions. Our results for the correlations length exponent at the
T=0 transition ind=2 and 3 are consistent with those of
Morris et al. f9g.

Finally, we note that Aspelmeier and Mooref4g have pro-
posed that them=` model is a better starting point for de-
scribing Ising or Heisenberg spin glasses in finite dimensions
than the Ising model. We have argued in this paper that the
spin glass withm strictly infinite is not a sensible model, but
one rather needs to considerm large but finite. Hence the
m=` formulation proposed by Aspelmeier and Mooref4g
and othersf3,8,9g would need to be extended to a 1/m ex-
pansion and evaluated, at the very least, to order 1/m. More
probably an infinite resummation would be neededf10g to
obtain sensible results in the spin glass phase, but this may
be feasible.
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FIG. 12. Data forjL /L as a function ofT in two dimensions.
Clearly the data for larger sizes are merging atT=0 indicating a
transition atTSG=0. The inset shows data forjL /L at T=0 confirm-
ing that the data become independent of size atT=0. The dashed
line is a guide to the eye.

FIG. 13. A scaling plot of the data from the largest sizes for
jL /L in two dimensions assumingTSG=0.
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