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Motivated by experiments in which single deoxyribose nucleic acid molecules are stretched and twisted we
consider a perturbative approach around very high forces, where we determine the writhe distribution in a
simple, analytically tractable model. Our results are in agreement with recent simulations and experiments.
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In recent years, there has been much interest in the area of
statistical mechanics of semiflexible polymers. These studies
have been motivated by experiments[1] on biopolymers in
which single molecules are stretched and twisted to measure
elastic properties. These experiments are designed to under-
stand the role of semiflexible polymer elasticity in, for in-
stance, the packaging of these polymers in a cell nucleus.
Twist elasticity plays an important role in several biological
functions. The first step in packaging deoxyribose nucleic
acid sDNAd in a cell nucleus a few microns across involves
DNA-histone association which makes use of supercoiling in
an essential way. The process of DNA transcription can gen-
erate and be regulated by supercoiling[2]. Here we focus on
a particular class of experiments which probes the twist elas-
ticity of DNA.

In the experiments of Stricket al. [2] the ends of a single
molecule of double stranded DNA are attached to a glass
plate and a magnetic bead. Magnetic fields are used to rotate
the bead and magnetic field gradients to apply forces on the
bead. By such techniques the molecule is stretched and
twisted and the extension of the molecule is monitored by
the location of the bead. One thus gets the extension of the
molecule as a result of the applied twist and force.

The simplest theoretical model used to interpret the ex-
periments makes use of the fact that the molecule is under
such high tension that it is essentially straight. We call this
limit the paraxial limit of the elasticity of a semiflexible
polymer keeping the optical analogy in mind[3,4]. In this
situation, the molecule, being straight and taut, cannot inter-
sect itself and so one does not expect self-avoidance effects
to be important. In computing the partition function one sim-
ply sums over all configurations without regard to self-
avoidance. This model is instructive because it is analytically
tractable and enables us to derive a simple explicit analytic
expression for the writhe distribution. This is the central re-
sult of our analysis.

Before discussing the schematics of the derivation of the
writhe distribution let us define a few pertinent quantities:
link, twist, and writhe numbers. For an open polymer of the
kind that is used in the twist-stretch experiments one can
define the link numbersLkd, an arbitrary real number, as the
externally imposed twist given by 2pn wheren is the num-

ber of applied turns on the bead. The twist numbersTwd
corresponds to the integrated rotation of the polymer around
its backbone and the writhe numbersWrd pertains to the
twist of the polymer backbone and is captured by the rotation
of the tangent vector. In computing the writhe distribution
we make use of the fact that the link number Lk is related to
twist and writhe numbers via Lk=Tw+Wr[5–7]. It is con-
venient to go to the conjugate space and work with the vari-
able B, the generator of link Lk. In this space the partition
functionZsB, fd neatly factors into writheZWsB, fd and twist

ZTsB, fd [8]. The distributionZ̃sLk, fd is a convolution of the
writhe distribution and the twist distribution. We compute the
link distribution in thea=LBP/LTP (the ratio of the bend and
the twist persistence lengths) →0 limit. In this limit the
writhe distribution coincides with the link distribution. This
is simply because in thea→0 limit it is very expensive to
twist the polymer around a straight backbone and the poly-
mer goes into a bending mode resulting in a twisting of the
polymer backbone[5]. From the writhe distribution com-
puted in this manner, one can recover the link distribution by
convolving it with the distribution of “dynamical twist.”

Our starting point is the wormlike chainsWLCd model in
which the polymer is modeled as a framed space curveC
=hxssd ,êissdj , i =1,2,3,where 0øsøL is the arclength pa-
rameter along the curve. The unit tangent vectorê3=dx /ds to
the curve describes the bending of the polymer while the
twisting is captured by a unit vectorê1 normal to ê3. In
keeping with the optics analogy[3,4], we refer toê1 as the
polarization vector.ê2 is then fixed byê2= ê33 ê1 to com-
plete the right handed moving frameêissd , i =1,2,3. The en-
ergy EfCg of a configuration of the polymer is a sum of
contributions coming from its bending and twisting modes.

In the presence of large forcesuFu→`, the molecule is
stretched taut and there is an energy barrier for the polymer
to pass through itself. In fact, the molecule is constrained to
lie in nearly a straight line between its ends with small de-
viations. As mentioned earlier, in this regime the polymer
being essentially straight cannot cross itself and thus self-
avoidance effects present in a real polymer are automatically
taken into consideration. Under these conditions the tangent
vector only makes small deviations from theẑ direction. We
can approximate the sphere of directions[5] by a tangent
plane at the north pole of the sphere. We call this limiting
model of the WLC the paraxial wormlike chainsPWLCd
model.*Electronic address: supurna@rri.res.in
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In this straight taut limit the polymer Hamiltonian
[5,8–10] reduces to

HPWLC =
pu

2

2
+

spf − Afd2

2u2 +
B2a

2
− fS1 −

u2

2
D

= HP − f +
B2a

2
,

whereHP is the Hamiltonian of interest in the paraxial limit
after we take out a constant piece.a is the ratio of the bend
persistence lengthLBP and the twist persistence lengthLTP.
The constantB corresponds to the conserved momentum
conjugate to the Euler anglec. f =FLBP/kBT whereF is the
stretching force andkBT is the thermal energy. The “vector
potential” Af=Bsu2/2d. Thus, the PWLC maps on to the
problem of a particle moving on a plane in the presence of a
magnetic fieldB and an oscillator confining potential which
arises from making a smallu expansion for the stretching
force −f cosu s−f cosu<−fs1−u2/2d=−f + f u2/2d [8,10].
Notice that, in contrast to the regime of low tension[5], in
this high tension regime the polymer cannot release an im-
posed twist by passing through itself because of the condi-
tion of suppression of configurations in which the polymer
folds back onto itself. This implies that in contrast to the
WLC model[5], in the PWLC model the free energy, torque-
twist relation and other related distributions arenot periodic
functions of the imposed twist.

Introducing Cartesian coordinatesj1=u cosf and j2
=u sin f on the tangent planeR2 at the north pole of the
sphere of directions one can express the smallu Hamiltonian
HP as follows:

HP =
1

2
spj1

− Aj1
d2 +

1

2
spj2

− Aj2
d2 +

f

2
sj1

2 + j2
2d, s1d

whereAj1
=−Bj2/2, Aj2

=Bj1/2. The corresponding partition
functionZ can be written in terms of the eigenvaluesEn and
eigenfunctionshunj of HPWLC as follows:

ZsB, f,j0,jLd = o
n

e−bEnsB,fdun
psj0dunsjLd,

wherej0=(j1s0d ,j2s0d) andjL=(j1sLd ,j2sLd) are the initial
and final tangent vectors at the two ends of the polymer. In
order to simplify our analysis further we confine ourselves to
the limit of very long polymers. Many of the experiments
involving biopolymers such as DNA explore this limit of
very long polymers which is also theoretically more trac-
table. For long polymerssb=L /LBP→`d only the lowest
eigenvalueE0sB, fd=Îf +B2/4− f +B2a /2 [10,11] of HPWLC

dominates the expression for the partition function. Thus, the
partition function can be written as

ZsB, fdb→` = e−bE0sB,fd. s2d

Determination of the writhe distribution. Let us consider

the link distributionZ̃sLk, fd:

Z̃sLk, fd =E e−bE0sB,fd−iBLkdB=E eifsB,Lk,fddB, s3d

where the phasefsB,Lk, fd is given by fsB,Lk, fd
= ibE0sB, fd−bBsLk/ bd. Since we are working in the limit
of long polymers we can compute this partition function us-
ing the stationary phase or saddle point method[8] where
only the stationary valuefsBst,Lk, fd of the phase domi-
nates.fsBst,Lk, fd is the central quantity of interestfrom
which all the relevant elastic properties of the taut polymer
can be derived. A similar perturbative analysis was done by
Moroz and Nelson[10], who in fact carry the analysis out to
higher orders in perturbation theory. What is new in our
treatment is anexplicit analytical expressionfor the writhe
distribution in the straight taut limit.

Here we outline the derivation for the writhe distribution.
The condition for stationaritys]f /]B=0d satisfied by the
stationary valueBst of B is

siLk̃ − aBstd
Bst/4

=
1

Îf + Bst
2/4

, s4d

where Lk̃=Lk/ b. We restrict to the case ofa=0. In this case
the equation simplifies and we get the following stationary
value ofBst:

Bst = ± i
4ÎfLk̃

Îs1 + 4Lk2d
.

Of the two roots, only the positive root is the physically
relevant one consistent with the saddle point approximation.
Setting iBst=t, wheret has the interpretation of torque, we
get the following torque-link relation:

t =
4ÎfLk̃

Îs1 + 4Lk̃ 2d
. s5d

Notice that for small Lk˜ we get a linear torque-link number

st -Lk̃d relation which goes over to a torque-link relation

independent of Lk˜ in the limit of large Lk̃. This is consistent
with recent experiments[12] and numerically generated plots
[8]. Inserting the expression for the stationary valueBst of B

into the partition functionZ̃sLk, fd we get the pertinent
writhe distributionPsW, fd. To compute this distribution we
have made use of the fact that fora→0, twist is extremely
expensive and the applied twist goes completely into the
bending mode. Thus, the link distribution in this limit corre-
sponds to the distributionPsW, fd of writhe. Given the writhe
distribution PsW, fd obtained in this manner the link distri-
bution PsLk, fd can be constructed forall values ofa by
convolving it with the twist distribution. In the generating
function space one simply needs to multiply the writhe par-
tition function ZWsB, fd by a simple Gaussian factor
ZTsB, fd=es−aB2/2d pertaining to the pure twist distribution
at finite a.

The analytic form of the scaled distributionPsWd
=PsW, fd /Ps0, fd of the writhe numberW and stretching
force in the high-tension regime(see Fig. 1) is
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PsWd = expf− bÎfhÎ1 + 4W2 − 1jg. s6d

Here f =FLBP/kBT with F the applied stretching force. This
analytic form of the writhe distribution is the central result of
this paper. Plots of this distribution are displayed in Fig. 1.
The form reduces to a Gaussian form{PsWd
<expf−2bfW2gj for small values of writheW and goes
over to PsWd<expf−2bÎf uWug for very large values of
writhe W. The writhe distributionfEq. s6dg represented in
Fig. 1 has all the expected features—it peaks near smaller
values and dies off for larger values of the writhe number.
This writhe number gets suppressed with increasing
strength of the stretching force. These qualitative features
are in agreement with recent simulationsf13g of the
writhe number as a function of the stretching force. The
explicit expression for the writhe distribution presented
here is exact in the high tension limit and we expect quan-
titative agreement between the predicted distribution and
future experiments probing the writhe distribution in this
regime.

To summarize, we have obtained an explicit analytical
expression for the writhe distribution of a semiflexible poly-
mer in the high tension regime. The expression for the writhe
distribution is simple and transparent and the qualitative fea-
tures agree well with available computer simulations[13].
For very large forces a DNA molecule undergoes force in-
duced denaturation[2] and therefore the distribution pre-
dicted here may not be directly applicable to DNA experi-
ments at very high tension. However, one can test the
predictions against experiments with other semiflexible poly-

mers. We therefore, expect this work to generate interest
amongst experimentalists to measure the writhe distribution
of stretched polymers. The distribution computed here is also
relevant to depolarized light scattering in turbid media in the
limit of small angle scattering[3,4,14]. We also have an ex-
plicit analytic form for the torque-twist relation which is in
agreement with recent experimental data[12]. In this model
the mean-squared writhe fluctuation which corresponds to

the second derivative of the conjugate distributionZ̃sLk, fd,
diverges att=2Îf, the point at which a “buckling instability”
sets in for the polymer. More explicitly, the divergence of the
second moment of the writhe distribution at the buckling
instability pointt=2Îf has the following form which can be
tested against future experiments:

kW2l =
f

4S f −
t2

4
D3/2.

The second moment of the distribution is consistent with
earlier predictions for the mean squared writhing angle for
long tense molecules[15]. At the buckling instability there is
a divergence of the writhe fluctuations. Since such a diver-
gence makes the polymer backbone fluctuate violently one
expects it to lead to a corresponding divergence in the mean
squared extensional fluctuationskj2l. This has, in fact been
probed in some recent experiments[16]. In the “paraxial”
limit we find that kj2l / kW2l=1/ f.

The paraxial approximation breaks down for large values
of the applied twist more precisely fort.2Îf [see Eq.(4)]
in which case the polymer explores configurations which de-
viate considerably from the straight taut limit. In the future
we would like to explore the low tension nonlinear regime
for the writhe distribution where phenomena like plectoneme
formation would play an important role and nontrivial self-
avoidance effects[3,15,17,18] need to be taken into consid-
eration. The present work will provide a limiting check on
calculations done in the nonlinear regime. As we mentioned
earlier, the writhe distribution has important implications in
the context of transcription and gene regulation. Therefore, a
complete understanding of writhing of a biopolymer back-
bone and its stabilization is of relevance to current research.
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