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Zeno blocking of interplanar tunneling by intraplane inelastic scattering
in layered superconductors: A generalized spin-boson analysis
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~Received 18 May 2001; revised manuscript received 4 September 2001; published 19 March 2002!

Following an earlier proposal that the observed temperature dependence of the normal-statec-axis resistivity
of oxide superconductors can be understood as arising from the inhibition of electron transport along thec axis
due to in-plane incoherent inelastic scatterings suffered by the tagged electron, we consider a specific form for
the interaction Hamiltonian. In this, the tagged electron is coupled to bosonic baths at adjacent planes~the
baths at any two planes being uncorrelated! and is coupled also to the intraplane momentum-flip degree of
freedom via the bath degrees of freedom. Thus our model Hamiltonian incorporates the earlier proposed
picture that each in-plane inelastic scattering event is like a measurement of which plane the electron is in, and
this, as in the quantum Zeno effect, leads to the suppression of interplane tunneling. In the present scenario it
is the baths which bring about a coupling between the intraplane and interplane degrees of freedom. For
simplicity we confine ourselves to dynamics in two adjacent planes and allow for two states only, as far as
momentum flips due to scattering are concerned. In the case when the intraplane dynamics is absent, our model
reduces effectively to the usual spin-boson model. We solve for the reduced tunneling dynamics of the electron
using a non-Markovian master equation approach. Our numerical results on the survival probability of the
electron in the initial plane show that the intraplane momentum flips lead to further inhibition of the interplane
tunneling over and above the inhibition effected by pure spin-boson dynamics.

DOI: 10.1103/PhysRevB.65.134501 PACS number~s!: 74.20.Mn, 74.25.Fy
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I. INTRODUCTION

The cuprate superconductors continue to capture
imagination of theorists, leading to a plethora of propos
for describing different physical properties. One of the
properties is the unusual suppression of thec-axis resistivity
compared to theab-plane resistivity, in the normal state
which cannot be simply explained by the anisotropy of
underlying crystal structure. It is also clear that any propo
mechanism for suppression of thec-axis resistivity has to
concomitantly account for loss-free pair tunneling, whi
leads to superconductivity. A model to elucidate and enco
pass the above-mentioned phenomena was earlier pres
by one of us in collaboration with others.1 The basic premise
of this analysis is that the strong intralayer electron-elect
scattering blocks the single-electron interlayer tunneling
not the tunneling of~the time-reversed! electron pairs. This
proposal is much in the spirit of and complementary to
work of Chakravartyet al.2 and that of Kumar,3 all based on
the idea of confinement by ‘‘orthogonality catastrophe.’’4

The above-mentioned idea was incorporated by Kum
and Jayannavar1 ~KJ! in terms of a Hamiltonian

H5H01H8, ~1.1!

whereH8, though not specified, was assumed tonot com-
mute withH0 and taken to describe in-plane scattering p
cesses. The termH0, on the other hand, takes into accou
the single-electron energies in two adjacent cuprate la
~designated bya andb) and tunneling between them:
0163-1829/2002/65~13!/134501~8!/$20.00 65 1345
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H05(
k,s

ekak,s
† ak,s1(

k,s
ekbk,s

† bk,s

2
\d

2 (
k,s

~bk,s
† ak,s1H.c.!. ~1.2!

In Eq. ~1.2!, the summations are over the wave vectork and
spin s, although the latter can be suppressed as there i
spin-flip scattering. In the KJ model the role ofH8 was
imagined such as to cause repeated interruptions in the
evolution of the electron state, due to successive in-pl
scattering events. Thus an initial state of the electron lying
the a plane with wave vectork0 and spins and denoted by
ua,k0 ,s& would transform into ua,k1 ,s&, then into
ua,k2 ,s&, and so on. Invoking then the ‘‘watched pot effec
of Simonius,5 KJ had argued that the survival probability o
the electron in thea layer, which is related to the transpo
coefficient across thec axis, is suppressed. In this paper w
provide an explicit treatment of this analysis, with the aid
a model forH8.

Before we specifyH it is useful to rewriteH0 in a sim-
plified notation by introducing pseudospin operators~for spin
1/2! which describe the two-level system of adjacent cupr
layers. Thus,

H5(
k

ekuk&^ku ^ ~ ua&^au1ub&^bu!

2
\d

2 (
k

uk&^ku ^ ~ ua&^bu1ub&^au!. ~1.3!
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On using the closure property of the states,H0 can be further
reduced to

H05
p̂2

2m
2

\d

2
~T11T2!, ~1.4!

where the first term represents the free-electron Hamilton
in terms of the momentum operatorp̂, and T6 are pseu-
dospin operators which connect thea andb layers. Similarly
1
2 6Tz project a given state on to theua& and ub& states,
respectively:

T15ua&^bu, T25ub&^au,

Tz5
1

2
~ ua&^au2ub&^bu!. ~1.5!

We are now set to write downH8 in accordance with our
stated objective; i.e.,H8 should contain terms that cause m
mentum flips as well as couple to a heat bath6 that incorpo-
rates quantum dissipative processes of inelastic scatte
Thus following Caldeira and Leggett,8 we may write

H85F S 1

2
1TzD(

q
gq~aq1aq

†!

1S 1

2
2TzD(

q
Gq~bq1bq

†!G x̂
1(

q
\~vqaq

†aq1Vqbq
†bq!, ~1.6!

where x̂ is the position operator conjugate top̂. In order to
understand the structure of the HamiltonianH, it is useful to
project Eq.~1.6! onto thea or theb plane. Thus

^auHua&5
p̂2

2m
1 x̂(

q
gq~aq1aq

†!1(
q

\vqaq
†aq ,

~1.7!

where we have dropped the term proportional tovq as it is
inconsequential. Similarly,

^buHub&5
p̂2

2m
1 x̂(

q
Gq~bq1bq

†!1(
q

\Vqbq
†bq ,

~1.8!

where again we have omitted the term proportional tovq .
Taken separately, either Eq.~1.7! or ~1.8! describes the
‘‘quantum Brownian motion’’ of a free electron in which th
dissipative friction arises from linear coupling to a quantu
heat bath comprised of bosonic excitations.9,10 Viewed dif-
ferently, as x̂ causes transitions among the free-parti
states, Eqs.~1.7! and ~1.8! account for inelastic scatterin
processes ina andb planes, respectively. On the other han
the off-diagonal element ofH is given by

^auHub&5^buHua&52
\d

2
, ~1.9!
13450
n
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,

where d is simply the tunneling frequency for cohere
propagation across thec axis.

Combining Eqs.~1.4! and ~1.6!, the full Hamiltonian can
be written as

H5
p̂2

2m
1F S 1

2
1TzD(

q
gq~aq1aq

†!

1S 1

2
2TzD(

q
Gq~bq1bq

†!G x̂2
\d

2
~T11T2!

1(
q

\~vqaq
†aq1Vqbq

†bq!. ~1.10!

Thus,H operates in the product Hilbert space of~i! the dis-
crete two-level system of adjacent cuprate layers,~ii ! con-
tinuous phase space of a free quantum particle, and~iii ! in-
dependent sets of quantum oscillators~or bosonic

excitations! belonging to thea or the b plane. As (12 6Tz)
are projection operators associated with the two adjacent
prate layers we may viewH as describing a free electro
coupled to an environment of quantum oscillators in wh
the coupling itself depends on which layer the electron is
Additionally, the term proportional tod accounts for coher-
ent tunneling of the electron across the layers.

A comment is now in order as to what has motivated us
use the phrase ‘‘zeno blocking’’ in the title of the paper.
H8 is absent andH0 is the only operative part of the Hamil
tonian, then the electron happens to reside in a superp
state of layersa andb, in each of which it moves like a free
particle @Eq. ~1.4!#. WhenH8 is switched on, the heat bat
comes into play and causes inelastic scattering of the e
tron through momentum flips. The strength of the scatter
process which can be measured in terms of a scattering c
section, say, depends on eitherugqu2 or uGqu2, depending on
which layer the electron belongs to, in view of the presen

of the projection operators (1
2 6Tz) in the Hamiltonian@Eq.

~1.6!#. Thus, each in-plane inelastic scattering event11 is like
a quantum measurement of which plane the electron is in
we view the heat bath as a measuring apparatus.12 Therefore
as in the quantum zeno effect, it is expected that a succes
of such scattering events would lead to a suppression o
terplane tunneling.

One other noteworthy point is that if the intraplane d
namics is absent, i.e., if the kinetic energy of the elect
goes to zero, then the position operatorx̂ can be replaced by
a constant. Because the bath operatorsaq(aq

†) and bq(bq
†)

belonging to two distinct layers are taken to be independ
the Hamiltonian in Eq.~1.10! reduces to the usual spin-boso
Hamiltonian

HSB52
\d

2
~T11T2!1Tz(

q
\gq~aq1aq

†!

1(
q

\vqaq
†aq . ~1.11!
1-2
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As has been extensively discussed in the review article
Leggettet al. ,4 Eq. ~1.11! can describe the dissipative dy
namics of a mechanical particle moving in a symmet
double-well potential. The minima of the two wells corr
spond toTz56 1

2 states. It has been argued by several
thors that when the damping, occasioned by the heat
coupling, exceeds a certain critical value, the system un
goes a spontaneous symmetry breaking transition atT50.
When that happens, tunneling gets suppressed and the
ticle is localized in one of the two wells. While this phenom
enon can also be viewed as a quantum Zeno effect of s
sort and is subsumed14 by the the more general Hamiltonia
in Eq. ~1.10!, the effect discussed in the preceding paragra
is a more subtle one, with richer consequences, as discu
below.

Coming back to the full Hamiltonian in Eq.~1.11!, we
would like to compute the survival probability in, e.g., thea
layer, defined as

Pa~ t !5
1

2
1^Tz~ t !&, ~1.12!

with the initial condition

^Tz~ t50!&5
1

2
. ~1.13!

Thus,Pa(t) measures the stay-put probability of the electr
in the a layer given that it was localized in thea layer att
50. The ‘‘leakage’’ inPa(t) would clearly then be a mea
sure of the transport across thec-axis.

The calculation ofPa(t) based on the complete Hami
tonian of Eq.~1.10! is a rather formidable one. We instea
study a simpler Hamiltonian in this paper, in order to set
the required theoretical machinery and check the relev
trends in the result. For this we assume that there are
two momentum statesof the electron between which the mo
mentum flips occur. Thus the continuous phase space o
electron, described in terms of the position operatorx̂ and the
momentum operatorp̂, is drastically reduced to a truncate
Hilbert space of pseudospin operators~for spin 1/2! Sz and
S6. The simplified Hamiltonian can then be expressed a

H52
\D

2
~S11S2!12SzF S 1

2
1TzD(

q
\gq~aq1aq

†!

1S 1

2
2TzD(

q
\Gq~bq1bq

†!G2
\d

2
~T11T2!

1(
q

\~vqaq
†aq1Vqbq

†bq!. ~1.14!

Note that now the system-bath oscillator coupling consta
gq and Gq have dimensions of frequency. It is pertinent
mention that a model very similar to that in Eq.~1.14! but in
a very different context of hopping of a particle along a ch
of sites, each coupled independently to a bath, had b
treated earlier, within a functional integral formalism.16

Even though the Hamiltonian in Eq.~1.14! is a much
simplified version of Eq.~1.10!, its analysis can be quite
13450
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complicated. This is the subject of this paper, the breakup
which is as follows. In Sec. II we review and compare t
relative merits and demerits of the various existing tre
ments of the spin-boson Hamiltonian~1.11!. This analysis
helps us to motivate a similar treatment for the more gen
case of Eq.~1.14! which is presented in Sec. III. In Sec. IV
we discuss the numerical results for the survival probabi
~1.12! and present certain conclusions. An analysis of the
Hamiltonian in Eq.~1.10! is deferred for future work.

II. SPIN-BOSON HAMILTONIAN: DILUTE BOUNCE GAS
APPROXIMATION AND BEYOND

The first step in the analysis of the spin-boson Ham
tonian~1.11! is to subject it to a unitary transformation, we
known in polaron physics. This transformation is defined
the operator

U5expF2(
q

S gq

vq
D ~aq2aq

†!TzG . ~2.1!

This changes the HamiltonianHSB to H̃SB where

H̃SB5UH SBU
2152

\d

2
~T1A21T2A1!1(

q
\vqaq

†aq ,

~2.2!

with

A65expF6(
q

S gq

vq
D ~aq2aq

†!G . ~2.3!

Note that we have ignored the counterterm that would oc
in Eq. ~2.2! as a result of transformation, Eq.~2.1!, since it
does not affect the dynamics.

The point about the structure ofH̃SB is that in any theory
in which the first term in Eq.~2.2! is treated as a perturba
tion, the coupling~parametrized bygq) is essentially consid-
ered to all orders. However, a shortcoming of such a tre
ment would be that the tunneling frequencyd would have to
be taken to be small. This explains why this analysis g
under the name of the dilute bounce gas approxima
~DBGA! or the noninteracting blip approximation in a pa
integral formulation.4 We discuss below the DBGA using
master equation technique~well known in the quantum op-
tics literature17!, following Aslangulet al. 18 who showed the
equivalence of their results with those derived from the p
integral method. Incidentally, both these approaches, viz.,
path integral and master equation, have also been show
be equivalent to a resolvent operator technique, which is
mulated in the Laplace transform domain instead of in
time domain.19

In general, the Hamiltonian in a system-plus-bath deco
position can be expressed as

H̃SB5HS1HB1HI , ~2.4!

where in the present case, of course,

HS50, ~2.5!
1-3
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while

HB5(
q

\vqaq
†aq . ~2.6!

The interaction termHI has a general structure

HI5\(
j

SjBj , ~2.7!

where in the present case the summation indexj runs from 1
to 2 and

S15T1, S25T2, B152
d

2
A2 , B252

d

2
A1 .

~2.8!

We assume that att50 the system and bath are decoupl
so that the total density operator has the factorized form

r~0!5rS~0! ^ rB . ~2.9!

Further, the bath is taken to be in thermal equilibrium, i.e

rB5
exp~2bHB!

ZB
, b5

1

KT
, ~2.10!

ZB being the partition function of the bath. Thus,rB com-
mutes withHB .

Defining a reduced system density operatorrS as

rS5TrBr ~2.11!

and using standard techniques to eliminate the bath deg
of freedom under the Born approximation, the equation
motion for rS can be written as17

ṙS52 i @HS ,rS#2 i(
j

^Bj&@Sj ,rS#

2E
0

t

dt(
jk

$^^Bj~ t2t!Bk~0!&&

3@Sj ,e2 iHS(t2t)SkrS~t!eiHS(t2t)#

2^^Bk~0!Bj~ t2t!&&@Sj ,e2 iHS(t2t)rS~t!Ske
iHS(t2t)#%.

~2.12!

In the above we have defined

^^XY&&5^XY&2^X&^Y&, ~2.13!

where the angular brackets denote bath averages in the
semble defined byrB in Eq. ~2.10!. Using earlier results20

^A6&50, ^A6~ t !A6~0!&50,

^A1~0!A2~ t !&5^A2~0!A1~ t !&

5F~ t !

5expH 2(
q

4gq
2

vq
2 FcothS 1

2
bvqD
13450
es
f

en-

3~12cosvqt !2 i sin vqt G J ,

^A1~ t !A2~0!&5^A2~ t !A1~0!&5F~2t !, ~2.14!

the equation of motion for̂Tz(t)& can be written as

^Ṫz~ t !&52
d2

4 E
0

t

dt@F~2t!1F~t!#^Tz~ t2t!&.

~2.15!

Aslangulet al. 18 have shown that the solution of Eq.~2.15!
agrees with the one arrived at from the path integral
proach within the DBGA.

As stated earlier and as is manifestly clear from E
~2.15!, the DBGA, though valid in the strong-coupling re
gime, is actually of second order in the tunneling frequen
d. Because of this, the DBGA has an inherent defect t
correct thermal equilibrium results are not recovered fr
time-dependent solutions, in the appropriate asympt
limit.4 Weiss and Wollensak21 have shown how to alleviate
this problem, within the path integral approach, by consid
ing interacting blips. Alternatively, this issue has been a
dressed in the resolvent operator method by Qureshi
Dattagupta22 by adding and substracting the ‘‘free’’
tunneling term in Eq.~2.2!. ThusH̃SB is rewritten as

H̃SB52
\d

2
~T11T2!2

\d

2
@T1~A221!1T2~A121!#

1(
q

\vqaq
†aq . ~2.16!

The idea behind the above decomposition is that in a
perturbative treatment of the second term in Eq.~2.16!, the
first term~i.e., the free-tunneling term! is dealt with exactly.
Thereforenow in accordance with the separation indicated
Eq. ~2.4!, HS is not zero but given by

HS52
\d

2
~T11T2!. ~2.17!

The master equation~2.12! in this case leads to the fol
lowing ~closed! equations of motion:

^Ṫz~ t !&52E
0

t

dt$K11~t!^Tz~ t2t!&

1K13~t!^T1~ t2t!2T2~ t2t!&%,

^Ṫ1~ t !2Ṫ2~ t !&52E
0

t

dt$4K13~t!^Tz~ t2t!&

1K33~t!^T1~ t2t!2T2~ t2t!&%,

~2.18!

where

K11~ t !5
d2

4
~11cosdt !@F~2t !1F~ t !#,
1-4
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K13~ t !5 i
d2

8
sindt@F~2t !1F~ t !#,

K33~ t !5
d2

4
cosdt@F~2t !1F~ t !#. ~2.19!

Note, however, that terms corresponding to the system
part of the evolution in Eqs.~2.19! get canceled off and only
the structure of the kernel matrix elements in Eqs.~2.19! gets
altered due to the decompositon in Eq.~2.16!. Note further
that the DBGA equation@Eq. ~2.15!# is recovered from Eq.
~2.18! on putting cosdt51 and sindt50 in Eq. ~2.19!, im-
plying that the DBGA is valid over time scales much shor
than the inverse tunneling frequency.

Equations~2.18! can be solved using Laplace transfor
techniques. We consider the spectrum of bath oscillator
be Ohmic; i.e., we replace the expression forF(t) in Eq.
~2.14! by

F~ t !5expH 22KE
0

`

dv
e2v/D

v FcothS b\v

2 D ~12cosvt !

2 i sinvt G J , ~2.20!

whereK is a dimensionless constant that parametrizes da
ing ~strength of coupling to the bath! andD is a cutoff fre-
quency. In the limit ofb\D@1 and Dt@1, the Laplace
transform ofF(t) has the expression20

F̂~z!5exp~ ipK !S 2p

\bD D 2K21 G~122K !G~K1z\b/2p!

G~12K1z\b/2p!
,

~2.21!

whereG(z) is the gamma function of argumentz. The sur-
vival probability, Eq.~1.12!, can then be computed by nu
merically inverting the expression for its Laplace transfor

It is instructive to compare the results for the surviv
probabilityPa(t) ~1.12! in the DBGA and beyond the DBGA
in the sense of Eq.~2.15! and Eq.~2.18!, respectively. These
are presented in Fig. 1. It can be seen from the figure
there are many more coherent oscillations in the surv

FIG. 1. Survival probability as a function of normalized time
the spin-boson model. Solid line~dashed line! corresponds to be
yond the DBGA~DBGA!. The values of the various parameters a
b\d550, D51000, andK50.1.
13450
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probability as a function of time in the result beyond t
DBGA than in the DBGA result.

III. EFFECT OF MOMENTUM FLIPS ON THE SURVIVAL
PROBABILITY

We turn our attention in this section to the main focus
the present study, viz., thec-axis transport in layered supe
conductors. Before we discuss the calculation it is usefu
recall the relevant phenomenology in order to put matters
perspective. Experiments in YBa2Cu3O72x suggest23 that
both the in-plane (ab-plane! resistivity and thec-axis resis-
tivity, in the normal state, have an identical temperature
pendence over a significantly wide range of temperature

r5A/T1BT. ~3.1!

What is of particular interest, in addition, is the prefactorB
of the linear term which shows an order-of-magnitude va
ance between theab-plane andc-axis values:

Bab51.431026, Bc5331025. ~3.2!

Our central proposal is that in-plane inelastic scatter
events determine the off-plane transport via incoherent t
neling processes. Now, in the incoherent regime one wo
expect for the stay-put probability an exponential relaxat

Pa~ t !'exp~2 d̃2tt !, ~3.3!

where d̃ is a ‘‘‘renormalized’’ tunneling rate andt is the
in-plane scattering time. Thus the rate of transmittan
across the adjacent planes is given by

l5 d̃2t. ~3.4!

If d is the interplane separation, one can define a ‘‘mobilit

m5dl. ~3.5!

Thus thec-axis resistivity

rc}m21~51/dd̃2t!. ~3.6!

On the other hand, the in-plane resistivityrab can be ex-
pected to have the Drude form

rab5mab* /ne2t, ~3.7!

wheremab* is the effective mass of electrons in theab plane,
n the number density, ande the electron’s charge. Therefore
the important point to note is that bothrc andrab are gov-
erned by the temperature dependence oft.

The next issue to address is what is the relevance of
spin-boson model as far as the inelastic scattering proce
in general and the temperature dependence oft in particular
are concerned. Here we may refer to the detailed work
Chang and Chakravarty24 wherein it has been shown that th
electron-hole excitations above the Fermi surface are ind
described by a spectral density of bosonic excitations wh
have the Ohmic form. Further within the DBGA it is we
known that@cf. Eq. ~2.21!#
1-5



e
a

o
r

ta

q

ra

in

ge
en-

ur-
ete

M. SANJAY KUMAR, S. DATTAGUPTA, AND N. KUMAR PHYSICAL REVIEW B 65 134501
t21}T2K21. ~3.8!

Therefore, the phenomenology contained in Eq.~3.1! would
suggest thatK51, which further implies that one is in th
strong-coupling regime, thus justifying the calculation
scheme outlined in Sec. II

We return now to the issue at hand concerning the role
momentum flips due to in-plane scattering, accounted fo
terms of the pseudospin operatorsS6, as in Eq.~1.14!. In
analogy with the spin-boson case we introduce the uni
transformation

U5expH 2(
q

F gq

vq
~aq2aq

†!S 1

2
1TzD

1
Gq

Vq
~bq2bq

†!S 1

2
2TzD G2SzJ . ~3.9!

The Hamiltonian in Eq.~1.14! becomes

H̃52
\d

4
~T11T2!~A11A2!

1
\d

2
~T12T2!Sz~A12A2!2

\D

4
S1~B2

(1)1B2
(2)!

2
\D

4
S2~B1

(1)1B1
(2)!2

\D

2
S1Tz~B2

(1)2B2
(2)!

2
\D

2
S2Tz~B1

(1)2B1
(2)!1(

q
\~vqaq

†aq1Vqbq
†bq!,

~3.10!

where

A65expH 6(
q

F gq

vq
~aq2aq

†!1
Gq

Vq
~bq2bq

†!G J ,

~3.11!

B6
(1)5expH 6(

q

2gq

vq
~aq2aq

†!J ,

B6
(2)5expH 6(

q

2Gq

Vq
~bq2bq

†!J . ~3.12!

Again we ignore counterterms which would occur in E
~3.10! as a result of the transformation, Eq.~3.9!, since these
do not affect the dynamics, assuminggk

2/vk5Gk
2/Vk . This

is a valid assumption since we consider any pair of cup
layers to be an unbiased two-state system.

As before we rewriteH̃ by pulling out the free-tunneling
terms, thus yielding

H̃5HS1HB1HI , ~3.13!

where

HS52
\D

2
~S11S2!2

\d

2
~T11T2!, ~3.14!
13450
l

f
in

ry

.

te

HB5(
q

\~vqaq
†aq1Vqbq

†bq!, ~3.15!

HI52
\d

4
~T11T2!~Ā11Ā2!

1
\d

2
~T12T2!Sz~Ā12Ā2!2

\D

4
S1~B̄2

(1)1B̄2
(2)!

2
\D

4
S2~B̄1

(1)1B̄1
(2)!2

\D

2
S1Tz~B̄2

(1)2B̄2
(2)!

2
\D

2
S2Tz~B̄1

(1)2B̄1
(2)!. ~3.16!

In the above an overbar is used to denote, for instance,

X̄[X21. ~3.17!

The interaction part of the Hamiltonian can be expressed
the compact form

HI5\(
j 51

6

SjBj , ~3.18!

where

S15T11T2, S25~T12T2!Sz, S35S1,

S45S2, S55S1Tz, S65S2Tz,

B152
d

4
~Ā11Ā2!, B25

d

2
~Ā12Ā2!,

B352
D

4
~B̄2

(1)1B̄2
(2)!,

B452
D

4
~B̄1

(1)1B̄1
(2)!, B552

D

2
~B̄2

(1)2B̄2
(2)!,

B652
D

2
~B̄1

(1)2B̄1
(2)!. ~3.19!

Using the Born master equation~2.12! we can now write
down a closed set of equations of motion for the avera
values of the pseudospin operators representing the mom
tum flip and the tunneling degrees of freedom. For this p
pose it proves convenient to define the following compl
set of operators, viz.,

X051, X15Tz, X25T11T2, X35T12T2,

X45Sz, X55S1, X65S2,

X75TzSz, X85~T11T2!Sz, X95~T12T2!Sz,

X105TzS1, X115~T11T2!S1, X125~T12T2!S1,

X135TzS2, X145~T11T2!S2, X155~T12T2!S2.
~3.20!
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The equations of motion for the averages of the above
erators can be expressed in the compact form

^Ẋi&52E
0

t

dtF (
n51

15

Kin~t!Xn~ t2t!1Ki0~t!G ,

~3.21!

where the matrix elements of the kernel in the integ
differential equation are given by

Kin~ t !5 (
j ,k51

6

@a jk
in~ t !Bjk

1~ t !1b jk
in~ t !Bjk

2~ t !#, ~3.22!

Bjk
65

1

2
~^Bj~ t !Bk~0!&6^Bk~0!Bj~ t !&!, ~3.23!

a jk
in~ t !5 (

l ,m50

15

k i j
l r lm~ t !kmk

n ,

b jk
in~ t !5 (

l ,m50

15

k i j
l r lm~ t !lmk

n . ~3.24!

In the above expressionsB6 represent the symmetrized~an-
tisymmetrized! correlation functions of the bath operator
The matrix r (t) determines the time evolution ofXi , i
51,2, . . .,15, under the free HamiltonianHS @Eq. ~3.14!#,

eiHStXie
2 iHSt5(

j
r i j ~ t !Xj , ~3.25!

while thek andl terms are the structure constants defin
through the commutator and anticommutator algebra:

@Xi ,Sj #5(
k

k i j
k Xk , $Xi ,Sj%5(

k
l i j

k Xk . ~3.26!

A careful examination shows that the only nonzero b
correlations are

B11
6 ~ t !5

d2

16
@F1~2t !6F1~ t !#,

B22
6 ~ t !52

d2

4
@F1~2t !6F1~ t !#,

B34
6 ~ t !5B43

6 ~ t !5
D2

16
@F~2t !6F~ t !#,

B56
6 ~ t !5B65

6 ~ t !54B34
6 ~ t !. ~3.27!

Again we consider an Ohmic spectrum of bath oscillato
Note thatF(t) is given by the same expression as in E
~2.20! andF1(t) is given by the same expression as that
F(t) but with K relaced byK/2. We calculate the surviva
probability @Eq. ~1.12!# by solving Eqs.~3.21! following the
method outlined at the end of Sec. II.

One is tempted to ask if the structure of Eqs.~3.21! sim-
plifies under the DBGA. Note that the DBGA equations a
recovered by puttingr lm(t)5d lm . It so happens that in ou
13450
p-

-

d

h

.
.
f

problem, the structure constants defined in Eq.~3.26! are
such that the kernel matrixK becomes diagonal under th
DBGA. Further, it turns out that̂Tz(t)& obeys the same
equation as in the spin-boson case under the DBGA, nam
Eq. ~2.15!, except for the coupling constantK in the spin-
boson problem being replaced byK/2. Hence, under the
DBGA, the tunneling particle does not sense the presenc
the momentum-flip degree of freedom at all, pointing to
physical limitation of the DBGA in this context. Conse
quently, in order to evaluate the effect of momentum-flips
the tunneling dynamics, one isforced to go beyond the
DBGA.

IV. DISCUSSION OF NUMERICAL RESULTS AND
CONCLUSIONS

In Fig. 2 we have plotted the survival probability of th
electron in the initiala plane in the case when the in-plan
inelastic scattering is absent~i.e., D50). In this case, as we
have noted in Sec. III, the tunneling dynamics is governed
an effective spin-boson Hamiltonian with a modified co
pling constant. Figure 2 shows that as the coupling to
bath becomes stronger (K becomes larger!, the survival
probability evolves in time more and more slowly on ave
age. This behavior is well known in the literature from stu
ies of spin-boson dynamics. What is new in our work
evident in Fig. 3, in which we have plotted the same quan
when DÞ0 ~i.e., inelastic scattering is present!. Figure 3

FIG. 2. Survival probability as a function of normalized time
the generalized spin-boson model. Values of various parameter
D50, b\d550, andD51000. Different curves correspond to di
ferent values ofK: ~a! K50.1, ~b! K50.25, ~c! K50.5, ~d! K
50.75, and~e! K51.

FIG. 3. Same as in Fig. 2, except nowD5d.
1-7
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shows that, in comparison with Fig. 2, there is a furth
slowing down of the time evolution. Thus, it turns out th
the in-plane inelastic scattering events lead to further inh
tion of the tunneling of the tagged electron, across thec axis,
over and above what occurs due to the spin-boson dynam

Figures 3~c!, 3~d!, and 3~e! can be fitted to exponential
@cf. Eq. ~3.3!# and thec-axis resistivityrc can be extracted
from the respective exponents@cf. Eq. ~3.6!#. As already
stated, the inclusion ofDÞ0 terms has led to further inhibi
tion of the transmittance across layers, over and above w
is permitted within the spin-boson dynamics. It is fair
state, however, that in-plane scattering processes (DÞ0)
et

A.

t f
th

ur

e

o

of
via
an
e

13450
r

i-

cs.

at

have been treated rather simplistically in that only two m
mentum states have been allowed. But even through
oversimplified picture we have been able to capture the
sential physics of the ‘‘Zeno blocking’’ of interplane tunne
ing. This is not surprising because it is known, in classi
stochastic theory, that momentum-reversing ‘‘collision
lead to Brownian motion, described by classical Lange
equations. Since the Ohmic dissipation model is known
yield quantumBrownian motion,8,10 our simplified model,
described by Eq.~1.14!, works reasonably well. It would o
course be important to extend the present analysis to a
phase-space treatment of the electron’s momentum. We s
return to this matter elsewhere.
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