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Why is an Ant’s Trail
Straight?

Problems of Pursuit

G S Ranganath

This interesting question puzzled the emi-
nent theoretical physicist Richard Feynman
when he was young. As a boy he did many
ingenious and interesting experiments. One
of them concerned ants. One day while taking
a bath he placed a lump of sugar at one end of
the bath tub and waited for an ant to locate it.
Feynman used a colour pencil to mark the
trail of his ant. He noticed that the first ant
that located the food took a random wiggly
route. But the successive ants did not exactly
follow the trail. Instead, each ant straightened
the trail of its predecessor a little bit. Thus
after some time the trail became a near straight
path. Many years later Feynman described
this process beautifully in the book   Surely
you're joking, Mr. Feynman!.  He concluded
from his observations that: “It is something
like sketching. You draw a lousy line at first,
then you go over it a few times and it makes a
nice line after a while.” We might argue from
this that ants understand geometry. Feynman
did not overlook this possibility. He said:
“Yet the experiments that I did to try to
demonstrate their sense of geometry did not
work.”

Feynman had recognized the importance of
this problem of one ant pursuing another.
Historically, pursuit problems are pretty old,
dating back even to Leonardo da Vinci. In

recent times this question has become all the
more relevant in robotics.

This problem has now been readdressed by
Alfred Bruckstein, a computer scientist at
Technion, Haifa, Israel. His answer in the
case of ant trails will surely be of interest to
biologists and others. Incidentally he did this
thought provoking work on ants when Haifa
was being bombed during the Iraq-Kuwait war.

Since ants have no sense of global geometry,
Bruckstein proposed a simple local interac-
tion between them. In this model each of the
‘mathematical ants’ goes directly towards the
one ahead of it. In other words, at any instant
of time an ant’s velocity vector always points
towards the ant immediately ahead. Hence
the distance between any two neighbouring
ants either remains the same or decreases, of
course avoiding collisions. If the leading ant
and its immediate follower move in a straight
path their distance of separation remains the
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Figure 1 The pioneer ant takes the curved path
ABC. The immediate follower avoids the bend B
and takes the route ADC.
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same. However, when the ant ahead is going
round a bend the follower heads straight to-
wards it avoiding the bend (see   Figure 1). This
process continues with every successive ant
avoiding the kinks in the path of its prede-
cessor. In course of time, the random path
continuously shrinks in length and is finally
transformed into one of minimum length,
which is a straight line.

Mathematically this process is governed by a
non-linear differential equation. Solving it for
the pursuit path of the follower given the trail
of the leader is a very difficult task. Although
attempts to solve such problems began in the
eighteenth century, to date we have solutions
only in two cases! The first one concerns
pursuit on a straight line at constant speed and
the second one relates to pursuit on a circle.
Bruckstein has worked out only the limiting
behaviour of the solutions of the differential
equation. He finds that the solutions finally
converge to a straight line. This study has
unravelled a possible interaction that can ex-
ist in the world of ants. But a word of caution
is in order. In principle one can try different
trail  following  models  based  on  other  local
interactions. These  models  may  also  have
solutions that finally converge to a straight
line. Thus only one of the possible interac-
tions between neighbouring ants has been
suggested by Bruckstein.

It is important to mention here that there is
one case where the differential equation has a
neat solution. Let us say that four ants are
located at the vertices of a square, at the centre

of which is a lump of sugar. Can all the four
ants reach this lump of sugar simultaneously?
Yes, they can. If each ant starts moving at the
same speed but follows the ant to its right (or
left), then the differential equation yields the
answer that all the ants will spiral towards the
centre at the same time. Interestingly, in this
case each ant covers a distance equal to the
edge of the square. This problem has been
generalised to the case of different numbers,
of ants at arbitrary starting positions with
variations of the speed and local pursuit laws.

In this context we recall Littlewood’s lovely
problem of a lion catching a gladiator. We can
recast this problem to our present theme. Let
us say an ant A is threatened by an enemy ant
E in a closed area. This is not impossible in the
world of ants. Further, let us say that the two
ants are equally energetic and hence can al-
ways move with the same speed. Then surpris-
ingly our ant A can avoid being captured by its
enemy E if it adopts the following strategy:
The ant A begins by moving at right angles to

Figure 2 The paths taken by ant A and its
enemy, ant E, according to the strategy described
in the text.
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the line of sight AE i.e, the line joining it and
the enemy ant (see  Figure 2). It moves in a
straight line along this direction until its path
intersects the radial line OR, emanating from
the centre O of the closed area, which is paral-
lel to the initial line of sight AE. From here it
continues in the same direction AR through a
distance  equal  to  it  and reaches  the  new
position A'.  By  this  time  the  enemy  ant
would have moved to a different position E'.
Now A locates the new line of sight A'E' and
repeats the whole procedure. By successive
applications of this method, the ant A can
avoid the enemy ant E eternally. In the process
A’s  own  path  will  be  a  squiral, i.e,  a  spiral
with  successive  line  segments.  More  on  this
problem  can  be  found  in  Ian  Stewart’s
article in Scientific American.

Bruckstein’s work not only sheds light on
what is going on in the world of ants but is  also
useful  in the world of robotics. We conclude
from his work that globally optimal solutions
for  navigation  problems  can  be obtained as
a result of near neighbour co-operation be-

tween simple agents or robots. It is very expen-
sive and technically difficult to make a single
robot that can find the shortest path around
obstacles. Instead of making a single sophisti-
cated robot we gain considerably by making
many simple robots. These can find the best
path through a mere pairwise nearest-
neighbour interaction.

Next time you seen an ant, approach it in all
humility. It is not for nothing that the Bible says

Go to the ant, thou sluggard; consider her
ways, and be wise.

(Proverbs 6,6.)

Long live the members of Formicidae.
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Molecular Clues to the Control of
Circadian Rhythms

T R Raghunand

Most time keeping systems are based on the
sun, reflecting age old patterns of human ac-
tivity. For most practical purposes, according
to our social contract, a day starts when the

sun rises and ends when it sets. But the
organisation of activity into day and night
cycles is not merely an arbitrary agreement for
setting clocks; it is also a biological impera-
tive. (Recall Geetha’s experiences in a timeless
environment:  Resonance Vol.1, No.3, 1996.)
Most organisms - animals, plants and even
microbes, have internal clocks that dictate
daily  or   circadian  (from  the Latin circa,
about, and  dies, day) rhythms of a myriad life




