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Abstract. Recent axiomatic derivations of the maximum entropy principle from consistency
conditions are critically examined. We show that proper application of consistency conditions
alone allows a wider class of functionals, essentially of the form | dx p(x) [p(x)/g(x)]}", for
some real number s, to be used for inductive inference and the commonly used form
—fdx p(x)In[p(x)/g (x)] is only a particular case. The role of the prior density g (x) is
clarified. It is possible to regard it as a geometric factor, describing the coordinate system used
and it does not represent information of the same kind as obtained by measurements on the
system in the form of expectation values. -
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1. Problem of inductive inference

In many practical situations measured expectation values of functions of state of a
system (even when noise free) are insufficient to uniquely determine the underlying
probability distribution. For example, in radio astronomy (Bracewell and Roberts
1954) one is faced with a problem of restoring the sky brightness distribution from
partial knowledge of its Fourier coefficients which can be measured as correlations
using the aperture synthesis technique. The problem of inductive inference is to choose,
amongst all possible distributions consistent with the data, a distribution which is ‘the
best’ in some sense. One, then, starts with a functional of the probability distribution
which is considered to be a measure of its ‘goodness’. The ‘best’ distribution is one for
which, subject to constraints of measured data, the functional attains its global
maximum. Note that ‘the best’ distribution depends on what functional is chosen as a
quantitative measure of ‘goodness’.

Based on Shannon’s information theory, Jaynes (1957) proposed the maximum
entropy principle (Mep) which uses the thermodynamic entropy, which is also the
Shannon’s information measure, ]

=X pilnp;,

as a functional to be used for inductive inference for the following reason. Statistical
mechanical description of a system contains far less information than is contained in
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mechanical description; the thermodynamic entropy is a measure of missing informa-
tion due to availability of only macroscopic measurements. Likewise, to every
probability distribution one can assign an information measure which expresses,
quantitatively, the uncertainty associated with statistical description of the system.
Jaynes advocated Shannon’s measure not because the expression is same as thermody-
namic entropy but because he expected that any other information measure may
eventually lead to contradiction since no other information measure is additive for
independent sources of uncertainty. Recently there have been attempts (Shore and
Johnson 1980, 1983; Tikochinsky et al 1984) to show that the thermodynamic entropy
functional has the deeper significance, attached to it by Jaynes, as the only consistent
procedure of statistical inference when insufficient number of expectation values are
known. These axiomatic derivations do not appeal to subjective characterization of
information measure but instead impose certain consistency requirements on the
methods of inference. From this point of view, pioneered by Jaynes, statistical
mechanics is to be considered as a special case of inductive inference, not dependent on
auxiliary hypothesis of equal apriori probabilities, ergodicity etc for its validity.

In §2 a brief summary of these axiomatic derivations of the MEP is given. In §3itis
pointed out that the application of consistency conditions needs some care.
Consistency conditions, when properly defined, do not restrict the functional to the
thermodynamic entropy. In § 4 an interpretation of the prior density, which is crucial to
application of a variational principle (even if form of the functional is derived), is given.

2. Summary of axiomatic derivations of the MEP

Axiomatic derivations by Shore and Johnson (SJ) and by Tikochinsky et al (TTL) are
based on a common fundamental principle: Two ways of using the same information
should lead to the same result.

In the case of continuous probability densities it is necessary to invoke, apart from
the probability density to be induced from the measurements and called the posterior
(or equivalently inferred density), a density called the prior which, accordingto SJ,isan
apriori estimate of the unknown true system density. We discuss the need for the prior
and its interpretation in §4.

Two ‘equivalent’ ways of using the same information appear in the derivation by SJ
when one considers two systems with states labelled x, and x, and given information is
separable in x, and x, i.e., no information about interaction between the two systems is
available. In this case one way is to solve the problem of inductive inference separately
for the two systems and obtain separate posteriors p, (x,) and p, (x;) from the given
priors g, (x,)and g, (x,) respectively. When systems are independent one can construct
a joint posterior p;, (x;,X2) = p; (X;) P2 (x;). Note that it is necessary to assume the
unmeasured correlation. The second way is to treat both the systems together in terms
of joint densities. Now it is necessary to choose the joint prior density g, (x;, x;) since
its marginals g, (x,)and g, (x,)do not determine its form uniquely. SJ make the choice
g12 (x1,%2) = gy (x,) g2 (x2). Once a prior is given (or chosen) the posterior is uniquely
determined for a particular variational principle. So let the posterior Py, (xy,x;) be
obtained from the chosen prior gy, (x, %) and using the sum total information. In
both these ways it was necessary to make some statistical hypothesis in order to get a
unique posterior. These hypothesis were to assume (i) that the joint posterior
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factorizes, in the first way and (ii) that the joint prior factorizes, in the second way. SJ,
in their system independence axiom, take these two ways to be equivalent and therefore
require the posteriors obtained in these two ways to be equal ie.,

P12 (x1,x2) = Py, (x1,%2).

Apart from the system independence axiom, stated above, SJ also require, as a part of
consistency condition uniqueness, invariance under coordinate transformations and
subset independence axiom which allows one to treat an independent subset of the
system in terms of a conditional density.

TTL formulate their consistency conditions for the case of a reproducible
experiment, where it is possible to carry out independent repetitions (which need not be
large in number) of an experiment. They consider the following two ways of giving
information equivalent:

(a) The result of the basic experiment is m+ 1 expectation values
(AY>=Y Aupp r=01,...,m<n 1)
i=1

Ag;=1

of state variables 4, which take values A4,; when the system is in state i. Here p; is the
(unknown) true probability associated with the state i; there are n mutually exclusive

and exhaustive states.
(b) Let the basic experiment be repeated N times. One can, then, define sample

averages

l n
B,ﬁ:N‘; N; A, r=0,1,...,m
Z Ni = N
i=1
for a particular realization N= (N4, ...,N,) in which the state i occurred N; times

(order immaterial). One can specify averages ¢(B,) as a result of the N-repetition
experiment:

(B,>=) B;P; )

N! N,

R . N
Py= N NPt P

where P; denotes the probability of occurrence of a particular realization N when
repetitions are independent. When repetitions are independent specifying the informa-
tion in (2) is the same as specifying the information in (1).

The inductive inference algorithm (denoted by TTL as) A induces a set of n
probabilities, say, q, . . . ,q, from the information in (1) and a set of [ = Nen-1Co 4
probabilities, say, Q; from the information in (2). TTL require the algorithm 4 to be
uniform in the sense that it acts on the data of a given kind in the same way i.c., when
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inducing probabilities Qs it attaches no special significance to the symbol n (this is
very reasonable as a realization N can be thought of as a state of some superexperi-
ment). The algorithm A is said to be consistent if the induced probabilities Qs are
related to the induced probabilities ¢;’s in the same way the true probabilities Py’s (for
independent repetitions) are related to the p;’s of the basic experiment.

Both these derivations by SJ and TTL conclude that Mep is the only consistent
method of inference.

3. Criticism of the axiomatic derivations of the MEP

Stated for independent repetitions, consistency condition due to TTL is reasonable.
However, the flaw in their derivation is that the apriori information that the repetitions
are independent is not used explicitly in the form of constraints. The need to use these
constraints can be seen from the following argument.

Consider a modified experiment which is N-repetition of the original experiment;
however, the repetitions are not independent. Let the probability of occurrence of a
particular realization N be P’;. In this case, one may still get the same m +- 1 expectation
values

(B,>=YBsPy r=0]1,....m &)
]

as before, though, now P’; # Pj as the repetitions are not independent. The algorithm
A can be used to induce, in a ‘uniform’ way a set of | probabilities, say Q5 from the
information in (3). It is, however, incorrect to require these Q’;’s to be related to the g’s
of the basic experiment in any simple way. In fact, when the repetitions are correlated
the P’j’s of the N-correlated repetition experiment cannot be related to the p;’s of the
basic experiment, the probabilities p;;’s of occurrence of state i in jth repetition must be
specified. Therefore, in general, specifying expectation values for an experiment and for
an experiment which is N-repetition of that experiment are not equivalent ways of
taking ‘the same’ information into account. Only in the case that it is known apriori that
repetitions are independent, one is justified in imposing consistency conditions. The
data (for example (2) or (3) which is numerically the same but a result of different
experiment), by itself, does not tell us whether the repetitions are independent or
otherwise. That the repetitions are independent is a significant apriori knowledge and
constraints corresponding to this knowledge must be used in addition to the m+1
constraints given in (2). These constraints are not used by TTL and the variational
principle is required to do this job.

It is shown in Appendix A that when these extra constraints are used the algorithm is
not restricted to one using — 3 p;In p; for ‘entropy’, but a wider class of functionals,
essentially of the form ) pj for some real number s, is allowed.

Now, when it is not known, one may model the N-repetition experiment as N
independent repetitions of the original experiment. This, however, is a part of statistical
modelling and does not constitute consistency conditions, for one could, if the situation
demands, model the repetitions as correlated ones. Thus, in the absence of knowledge
of a.certain correlation in the problem at hand, one should keep modelling the
correlation apart from consistency conditions (if any); one should not give the status of
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a consistency axiom to any statistical modelling. This is what the system independence
axiom by SJ does, as is discussed below.

As seen before, in the case of separable information about two systems, it was
assumed either that the joint posterior factorizes or that the joint prior factorizes; only
then it was possible to get a posterior. Now assuminga factorized posterior is assuming
indcpendence of the systems, and it remains to be seen if factorizable prior is equivalent
(in the case of separable information) to assuming factorizable posterior. SJ interpret
(Shore and Johnson 1980, p. 28) the prior in a data-adaptive manner in that a prior is
our apriori estimate of the true system density. A factorized prior, according to SJ,
represents our apriori estimate that the systems are independent. Now the new
information is separable and thus gives no clue to any interaction between the systems
and therefore there is no need to change our apriori knowledge about the independence
of the systems. This is the justification given by SJ of their system independence axiom
which treats factorizable posterior and factorizable prior (in the case of separable
measurements) on the same footing. It is shown in § 4 that a prior cannot be interpreted
in a data-adaptive manner in the sense that statistical information (such as system
independence) cannot be encoded on the prior. A factorizable prior (whether the
information is separable or otherwise) is not equivalent to a factorizable posterior and
the two ways of getting a posterior, considered by SJ, are not equivalent. These two
ways are equivalent if and only if it is known apriori that the systems are independent.
However, one must use constraints corresponding to this in the second way of
obtaining the joint posterior. Since these constraints are not used by SJ their system
independence axiom always models independent systems whenever prior factorizes and
separable information is available. Note that the notion of ‘separable information’ is
coordinate frame-dependent. It is necessary that the prior factorizes in the same frame
in which information is separable in order that the problem of inductive inference
factorizes into two problems, one each for the two systems. We call a separable
information (expectation values involve either x, or x, but not both x, and x,) to be
separable in the geometric sense if the prior factorizes in the same frame; and separable
in the statistical sense if the systems are statistically independent in that frame. Taking
an information separable in the geometric sense to mean statistically separable
information is putting unmeasured correlation equal to zero. This is analogous to
obtaining a ‘dirty map’ (or principal solution) in radio astronomy where unmeasured
Fourier coefficients of the sky brightness distribution are put equal to zero (Bracewell
and Roberts 1954).

It is shown in Appendix B that when constraints corresponding to system
independence are used a wider class of functionals, of the form [ dx p (x) [p (x)/g T,
is allowed.

4. Interpretation of the prior density

In the case of continuous densities, the only variational principle which is invariant
under coordinate transformations and uses the posterior (to be induced) alone is the
one that uses functionals equivalent to [ dx p (x). We see that sucha functional is of no
use as a principle of inductive inference. It is, therefore, necessary to invoke yet another
density, say g(x), so that the variational principle has sufficient richness of its solutions.
At this stage the prior appears for purely mathematical reason and it is worthwhile to
interpret it.
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First we show that a prior cannot be interpreted in a data-adaptive manner. By data-
adaptive we mean the following. Let us start with a prior, say g, (x), and obtain
posterior p, (x) using new information in the form of expectation values. Then, one
cannot drop these constraints and use the posterior p, (x) as prior when some more
information is available. The posterior p, (x) obtained in this way will, in general, be
different from the posterior p (x) obtained from g, (x) using both sets of constraints.

To see this, we consider the entropy — | dx p (x)In [ p (x)/g (x)], though the argument
is quite general. Let

(X P ()AL () =Q  k=1,...,my,
X prue X)B; () =T,  j=1,...,my,

be two sets of expectation values, given to us. We assume that such expectation values
are realizable in that there exist p’s which satisfy these. The posterior p (x) obtained
from g, (x) and using both these sets of constraints is of the form

p(x) =g, (x)exp{ 2‘: Ay A (x)+ 23 “ij(x)},
k=1 i=1

where the Lagrange multipliers A’s and «’s are chosen (uniquely) such that p (x) satisfies
the given expectation values. The posterior p, (x) obtained from g, (x) using only the
first set of constraints is of the form

pr (x) = g1 (x)exp{ Y LA, (x)},
k=1

where the Lagrange multipliers A’s are chosen such that p, (x) satisfies the first set of
constraints. In general A, # A, for some values of k as the Lagrange multipliers A’s
depend on B;(x) and T'; while 1’s do not depend on these. Now, the posterior p; (x)
obtained using p, (x) as prior and the second set of constraints is of the form

P> (x) = py (x)exp { Y 8,8 (x)}
ji=1

= g1 (x)exp {hz' AA M+ Y ﬁij(x)}
=1 j=1

for properly chosen Lagrange multipliers f’s. Since, in general, 4, # A, and in order to
satisfy {dxp, (x)B;(x) = I'; we have B;# a; for some values of j. Thus we see that
p2 (x) # p (x). The posterior p, (x)satisfies the second set of constraints, but not the first
set of constraints. A prior is not equivalent to a set of constraints and thus cannot
represent our apriori knowledge in the form of expectation values.

To see that such a density is natural to the continuous case consider a discrete system
with mutually exclusive and exhaustive states labeled 1, . . . ,n. These states can also be
labeled by distinct real numbers, say, X, . . . , X, Where x; < Xx; < ... <X, and all x’s
belong to some interval, say [a,b]. One may ask: What is the number of system states in
some interval, say, (x —} dx, x+4 dx]? In the limit that n — co one may be able to
define a density g (x) such that g (x)dx gives the relative number of states in the dx
neighbourhood of x. g (x)is a scalar density with respect to coordinate transformations,
it is non-negative and need not be normalizable. Note that, so far, we have not defined
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probability distribution on the system states. The scalar density g (x) then tells us how
the system was ‘composed’. In the discrete case, considered above, a natural n-tuple was
(P1, - - - »Pn) Of probabilities to be induced. By ‘natural’ we mean an object that enters
the very statement of the problem of inductive inference. Consider a problem of
inductive inference for a system which has n states as before, but now, each state has a
degeneracy, say g;. Now, the two n-tuples, natural to the problem of inductive inference,
are (p1, .- . ,Ps) and (g,, . . . ,g.)- The latter n-tuple is also associated with the first
system considered above where every g; is unity. The degeneracy n-tuple is a apriori
knowledge about the system in that it tells us the relative weight attached to each state.
However, the statement that all g’s are equal is not equivalent to the statement that our
apriori estimates of the p’s are all equal. For, the notion of degeneracy is independent of
our estimates (or even knowledge) of the true state probabilities.
Thus, in the variational principle of the form

§dxp ([ p(x)/g(x)]

for some function h, the function g (x) can be interpreted as a non-negative scalar
density devoid of any statistical significance as an ‘estimate’. This density is analogous
to the degeneracy n-tuple of the discrete case.

5. Conclusion

The prior density, which is crucial to application of a variational-principle-approach to
inductive inference is shown to be free of any data-adaptive interpretation i.e., it is
shown that statistical information about the system cannot be encoded on the prior and
thereby it cannot represent our apriori estimate of the unknown true system density.
Prior is interpreted as a non-negative scalar density (with respect to coordinate
transformations) analogous to degeneracy of a discrete system.

Derivation of functionals, to be used in the variational principle, will, in general,
involve consistency requirements, formulated in terms of existence of more than one
equivalent ways of using the same information, as the very general requirements of
uniqueness and coordinate invariance do not fully restrict the form of the functional.
These equivalent ways will be defined for a specific experiment and it is necessary to
remember this in the form of appropriate constraints. When such constraints are used
in the case of specific experiments considered by Shore and Johnson and by
Tikochinsky et al it is shown that the MEP is not the only consistent method of inductive
inference, functionals of the form { dx p (x) [ p (x)/g (x)]*, for some real number s, give
consistent results. Jaynes conjectured that because of nonadditivity, functionals other
than — Zp, In p; will eventually lead to a contradiction. We have shown that functionals,
of the above form, exist which have the nonadditivity property and yet do not lead to
any inconsistencies in the kind of experiment under consideration. Consistency
conditions alone do not lead to the inference procedure of — Zp,In p; maximization;
some more input is necessary. The Jaynes conjecture remains to be proved.

Acknowledgements

It is author’s pleasure to thank Dr Rajaram Nityananda for introducing him to the field
. and for numerous instructive discussions. He is also grateful to Dipankar Bhattacharya



308 S N Karbelkar

for a perusal of the manuscript. Thanks are due to Raman Research Institute for
research facilities.

Appendix A
Consistent functionals in the case of reproducible experiments

We show that the ‘entropy’
H(p;g] = . pi(pi/9:}
i=1

for some real s, such that H is a convex functional of p, is self-consistent in the case of N
independent repetitions. In the case of the basic experiment g; = 1 and p{'’s are given
by

T+ (P + Y AP 4, =0

k=0

where the Lagrange multipliers are such that ) A,,p{"’ = (A4, ). The superscript (j)
i=1

refers to j-repetition experiment. The constraint that the N repetitions are independent

is most easily effected by writing

Py=gy(p"" ... (0™ X piV=1
i=t

N!

INENT N

and so
n N
H[Py 93] = [ > (Pi"’)”’] :
_i=1
Information obtained for N-repetition experiment is
<B,.> = z A’ip‘SN)’
i=1

therefore p{*”s are given by

[ > (pz”’)”’]m' 1+9) () + 3 4" 44y =0.
i=1 k=0

That the solution is the same as before i.e. p{* = p{" can be seen from the choice

J
(N) _ 2(1) - (1)1 +s Nt
Ay = A Z (pi’) .

i=1
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Note that this is possible because of the appearance of an overall factor

[ 5 (p,!"’)“’]N"
i=1

which can be absorbed in the Lagrange multipliers. This may not be the case for more
general ‘entropies’. For example, a sum or difference of two distinct power laws may
lead to inconsistencies i.e. p{™# p'"’ even after the constraint that repetitions are
independent is explicitly used as above. It can also be shown that ‘entropies’
~Xg;In[pi/g9:] and —Z p;In[p,/g;] are consistent.

Appendix B
Consistent functionals in the case of independent systems

The constraint that the two systems labeled x, and x, are independent is most easily
effected by writing p,, (x;,%;) = py, (x1)p2, (x2) subject to two constraints | dx, p,,
= jdxz p., = 1. The subscript J represents the fact that the problem of inductive
inference is being solved for the joint system (the ‘second’ way in the text). Consider an
entropy of the form

Py (X1)P2y (xz)] )

H[Py,; g12] = ”dxl dx, g, (x4)9: (xz)F[gl 1)92 %2

For p,, (x,) to equal the solution p, (x,) obtained for the system 1 alone (the ‘first’ way
in the text) it is sufficient and (perhaps) necessary that the variation 6H/dp,, equal
F'(p,,/9,) apart from a multiplicative and an additive factor which can be a functional
of p,, alone i,

J‘dxz p:, F (__p,,pz,> =F (&1) '[dxz 9.6 (EH) + J.dxz g2 R (-pﬁ)

g1 92 g1 g2 g2
for some functions G and R for all p,,. Here the prime denotes derivative with respect to
the argument. Functional derivative of this equation with respect to p,, gives

ruryF (ryry)+F (ryry) =G (ry)F (r)+ R (ry); r= p/g.

We also require the solution p,, (x,) to equal p, (x,). This amounts to the requirement
that the functions G’ and R’ equal F' apart from a multiplicative and an additive
constant i.e.

ruty F(ryry)+ F (ryry) = AF (r)F (ry) +a(F (ry)+ F (ry)) (B)

for some A and a. To determine the function F we differentiate this equation with
respect to r,, and then let r, = x,r,; = 1 to get the homogeneous equation

xF"(x)+ F"(x) Q—a—AF' (1)) =0,
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whose solution is of the form F (x) = x™ where
mm—1)(m—pu)=0;, pu=a+iF (1)

The roots of this indicial equation are all distinct if # # Oand u # 1 and the function F
is of the form

F(x)=a;+a,x+ayx",
where the constants a’s are chosen to satisfy the equation (B1). The form of the function
Fwhenu=0oru=1Iis
F(x)=b,+byInx+b,x u=0,
=c,+c3Xx+cyxinx u=1,

where the constants b’s and c’s are chosen to satisfy the equation (B1). Thus we see that
the ‘entropies’ of the form

fdxp(x)[p(x)/g(x)] (and the limiting forms
—fdxg (x)In[p(x)/g (¥)]; —[dxp(x)In[p(x)/g (x)])

are consistent when a separable information is given for statistically independent
systems.
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