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Crossing Bridges

Joseph Samuel

Here is a figure (Figure 1) that many of you may have seen
before.  The problem is to trace the figure without removing
your pen from the paper or retracing a path.

You have probably wasted hours during your school days trying
to figure out this puzzle.  I know I did.  I have never been able to
solve this puzzle.  Someone I know did claim that he had done
it, but on closer inspection it turned out that he had used sleight
of hand.  I don’t know anyone who has succeeded.  It seems fair,
perhaps, to conclude that it cannot be done.  Can we let the
matter rest at that?

No! We cannot. The problem in a word, is Hungarians.  The
Hungarians are a small and extremely talented community of
people (see Box 1).  It is entirely possible that tomorrow a clever
Hungarian will walk through the door and say ‘See, this is how
it is done’.  Can we show that it cannot be done?  What we are
looking for here is a  proof.

The Seven Bridges of Königsberg

Königsberg is a town  through which flows the river Pregel.
There are seven bridges across the river as shown in the map
(Figure 2). There was a saying among the inhabitants of this
town that it was impossible to plan a walk so that each bridge
was traversed once, but not more than once.  Opinion was
divided on whether the saying was correct or not.  Some held
that it was. Others were doubtful; but there was no one who
maintained that is was actually possible.   We are up against
Hungarians again!  Hungary is not too far from Königsberg and
it is entirely possible that some visiting Hungarian will, on
hearing about the challenge, spin on his heel, mutter something
in Hungarian and traverse each bridge exactly once, following a
path that no one had thought of up till then.  Again, we need to

Figure 1. School child’s
puzzle.
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find a way to prove that it cannot be done.  Till we do this we are
not safe from Hungarians.  The mere fact that we have so far
been unable to do it means nothing.  Perhaps we haven’t tried
hard enough. Perhaps we are not smart enough.

How would we go about establishing that the problem has no
solution?  One possibility is to enumerate all possible paths and
show that none of them succeed. But this is very tedious and
impractical. Even if we do this for the bridges of Königsberg,
we would learn nothing about other similar situations. Consider
for example the fictitious city of  Lutetia at the confluence of
rivers with two islands in the river called Geometria and
Topologia (Figure 3).

Having solved the Königsberg problem by enumeration does
not at all help us in understanding the more complex situation
prevailing in Lutetia.  We need to do better than that!  We need
to solve the entire class of problems at one shot. It is interesting
to note that the map of Königsberg has a lot of redundant
information. The map tells us the size of the island. This is
clearly not relevant to the problem. Let us shrink the island
down to a dot.  Similarly, all land masses can be shrunk down to
dots. The lengths of the bridges are also not relevant, just as the
kind of vegetation growing on the island is not relevant. The
widths of the bridges are also not relevant. Let us shrink the
bridges down  to lines.  After getting rid of excess information,
the map of Königsberg is reduced to a skeleton (Figure 4).  It
consists of four dots representing the land masses ABCD and

Figure 2. Map of Königs-
berg.

Box 1. Hungarians.

The parable of the
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seven lines representing the bridges connecting them.  This
map has exactly the information we want.  The problem now is
‘Can I trace out the figure above without retracing a line? ’  The
problem of the Königsberg bridges is clearly in the same class
as the problem you ‘wasted’ your time on at school.

You may be heartened to learn that the problem of the
Königsberg bridges was first solved by the great mathematician
Leonhard Euler and this led to the birth of a new branch of
mathematics – topology.  We have now posed three problems in
topology.  What distinguishes these problems from other mathe-
matical problems?

In school you are often asked to solve problems where both the
data given and the answer sought are numbers: Eg. A B C and D
dig a ditch.  After a brief description of the abilities of A B C and
D in digging ditches, one is asked how long the job will take to

Figure 3.  Map of Lutetia.

Figure 4. Skeleton of the
map of Königsberg.
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get done. (When I was at school, A was in his prime; indeed,
according to one  eminent authority,  A could do as much work
in an hour as B in two or C in five!)  The answer that you have to
find is a time which is, say five hours.  In other problems one
may compute a distance or the sum of money in a bank account
after various withdrawals, deposits and interest rates are
accounted for.

The problems posed above are in a different class. The data
given are not numbers, but a set of points and connections
between them.  The answer sought is not a magnitude.  The
question is : Can you trace these lines?  The answer is yes or no.
Both the questions and the answers are of a qualitative nature,
not of a quantitative nature.

Problems like the Königsberg bridge problem are studied in
topology.  More precisely, network topology.

Network Topology

A network is a set of points  (called vertices) with interconnec-
tions. The interconnections are called edges. If one can go from
any vertex of the network to any other vertex by following
edges, we say that the network is connected. We always suppose
that the number of vertices and edges is finite.  Figures (1, 4) are

Box 2. Geometry and Topology.

Let us take a moment to understand the difference between topological and geometrical properties. If you

make a regular polyhedron out of wire and sit on it so that it is squashed (but not broken!) the result is

a topologically regular polyhedron. The faces are no longer regular polygons and therefore the polyhedron

is not geometrically regular.  But topologically, all we care about is that the squashed polyhedron has the

same number of edges meeting at every vertex and the same number of edges around every face.  It is

interesting that in order to solve problems you sometimes ‘throw away’ data.  In classifying the regular

solids, we did not use all the information at our disposal.  Though we were interested in polyhedra which

were geometrically regular, we only used the fact that these polyhedra were topologically regular.  None

of the geometrical properties of regular solids were used.  They were not necessary.  Topological

information was sufficient to provide a solution. In the problem of the Königsberg bridges it is quite

obvious what the irrelevant data is.  This is not always so. In cosmology for instance, progress was

hampered for centuries because we did not realise that we ourselves were irrelevant!
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examples of connected, finite networks. The question we posed
is now easily tackled.

We wish to prove that there is no path in the network (1) which
traverses the edges of the network exactly once. We prove this
by assuming that there  is such a path and arriving at a contra-
diction.  Let us suppose that there is a path in a network that
traverses each edge exactly once.  At all vertices except the
starting and ending vertices, the path will arrive by an edge and
leave by another edge. Thus the total number of edges at any
vertex must be even unless it is the starting or the ending
vertex.  We conclude that if the path is closed (the starting and
ending vertices are the same) all vertices must have an even
number of edges.   If the path is open, two vertices must have an
odd number of edges and the rest must have an even number.
The network must have either  exactly two vertices with an odd
number of edges or no such vertices.  The network in  Figure 1
has four vertices with an odd number (five) of edges and it
follows that the problem posed at the beginning of this article
does not have a solution.  The reader can now prove that the
bridges of Königsberg and Lutetia are both safe from Hunga-
rians.

Planar Networks

Planar networks are networks that you can draw on a plane
without the edges crossing. An example of a planar network is
Figure 4.  Figure 1 looks non-planar as drawn but you can redraw
it so that the edges do not cross. So it is, in fact, planar.  Planar
networks divide the plane into regions. Each of the regions we
call a face.  We write  V for the number of vertices, E for the
number of edges and F for the number of faces.   Consider  a
finite, connected and planar network.  We now reduce it by the
following  elementary moves. These moves reduce the number
of edges while keeping the network finite, connected and planar.

The first move (see Figures 5) reduces  E and  F by one. The
second (see Figure 6) reduces V and  E by one.  Neither of the
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moves alters the quantity V– E + F.   A network can be reduced by
the above moves until there are no more edges. The original network
is now reduced to a single vertex, i.e. a network with V=1, E=F=0.
We conclude that for all planar networks, V– E + F=1.

You might have thought of the school child’s puzzle as a means of
whiling away time in class when serious matters like history,
geography and calculus were being taught. In fact, as we have seen,
great minds like Euler’s have also been absorbed in similar  questions.
The reason (apart from the natural tendency of active minds to
‘play’ with ideas) is that these apparently simple (topological) ideas
are actually very deep and have applications in diverse fields like
physics and geometry. You will see below how the study of network
topology helps us to understand a question in geometry: the
classification of the regular solids.

Platonic Solids

Let us move on now from Königsberg and topology to Greece and
geometry.  The ancient Greeks were geometers par excellence. They
discovered the five regular solids (see Box 3), also called the platonic
solids. On the plane one can draw regular polygons – polygons with
identical sides and angles. In three dimensions, we talk of polyhedra
rather than polygons.  Imagine taking a watermelon and slicing
away the skin with a finite number of  plane cuts.  Each cut takes

Figure 5. Remove an
outside edge and a
face along with it.

Figure 6. Remove a
vertex that is dangling
from an edge along with
that edge.

1
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some of the flesh along with the skin and exposes a ‘face’.   The
resulting figure is called a polyhedron (many faces, the word
‘hedra’ means ‘face’ in Greek).  This is quite similar to producing
polygons by taking a disk and cutting away the circumference
by a finite number of straight lines. The faces of a polyhedron
meet at lines called edges. The edges meet at points called
vertices.  We define a polyhedron to be regular if it has faces
which are identical regular polygons and if it has the same num-
ber of edges meeting at every vertex.  These regular polyhedra
are called platonic solids.  A solid cube is an example. Are there
others?  Yes, there is the tetrahedron.  With some playing
around you can produce three more  –  the octahedron,  the do-
decahedron and the icosahedron. Are there still more?  We are
unable to produce more.  But that doesn’t prove that there are
no more regular solids. Remember the parable of the Hungarians?
We need to prove that there are no more regular solids.

This is a problem in geometry.  But as we will see, our study of
topology and planar networks will help us to answer it.  Take
the surface of any polyhedron (not necessarily regular), remove
one of the faces, and open it out and spread it on a plane. It is a
connected, planar network.  Since we had to remove a face to
make it a planar network, it follows that for  the original solid
figure the number of vertices, edges and faces are then related
by

V – E + F=2 . (1)

Box 3. Definitions and Such.

Regular polyhedra are variously defined by various authors.  Our use of the term agrees with Coxeter (see

Suggested Reading below).  On page 5, Coxeter defines a convex polyhedron to be regular if “its faces

are regular and equal and its vertices are all surrounded alike”.  The alert reader would have noticed that

in the main article we went to extreme lengths to avoid defining anything precisely.  In fact we defined

a polyhedron in terms of a watermelon without ever defining a watermelon!  Readers dissatisfied with

this slipshod approach are advised to consult their friendly neighbourhood mathematician or the

excellent book by Coxeter.  Without saying so explicitly, we have assumed here that the polyhedra of

interest are convex  (I very much doubt that all watermelons are convex) and that their surfaces are simply

connected (I believe this is true for all watermelons).
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This is a famous f ormula discovered by Euler (and independently
by Descartes). How does this help us show that there are no
more regular figures?  Well, regular figures have the property
that all faces and all vertices are identical.  The number of  edges
meeting at  each vertex must be the same (let us say p) for all
vertices.  Similarly, the number of edges surrounding a face (say
q) must be the same for all faces.  (Convince yourself that  p  and
q must be greater than two.) It follows that

E=pV/2 , (2)

since one can count the edges by multiplying the number of
edges  at each vertex by the number  of vertices and dividing by
two (since each edge connects two vertices and has been counted
twice). Similarly

E = qF/2. (3)

Using Euler’s formula  (1) we find,

1/p + 1/q = 1/2 + 1/E. (4)

Remember that  p  and  q are integers and must be three or grea-
ter. We now need to find all the solutions of  (4).  If both  p  and
q are four or more, then the  LHS is less than or equal to 1/2.
There is no solution for any number of edges. Thus either q  or
p must be  equal to 3. Let us suppose that q = 3. Then (4) reads

1/p = 1/6 +1/E.

Clearly  p must be less than 6, otherwise there is no solution for
E. The only possibilities are p = 3, 4, 5.  Enumerating these
possibilities,

q =3,  p=3: from equations (2, 3, 4),  E=6,  V= 4,  F= 4,
this describes the tetrahedron 1 (Figure 7).
q=3,  p=4:   E=12,  V=6,  F=8, this is the octahedron1

(Figure 8).
q=3, p=5: E=30, V=12, F=20 this is the  icosahedron1

 (Figure 9).

The other solutions, in which p=3, can be got by switching p

1 It still remains to be proved

though that this is the only figure

with these values of V, E and F.

This takes a bit more work and

will be dealt with in a future

issue of Resonance.
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and q in the above solutions. This give two more new ones

q=4, p=3: from equations (2, 3, 4) E=12,  V=8,  F=6,
this is the cube (or hexahedron1 ) (Figure 10).
q=5, p=3: E=30, V=20, F=12  this is the dodecahedron1

(Figure 11).

Thus the solutions to Euler’s formula (which is a formula from
topology) reproduce exactly the five known regular figures
occurring in geometry (Figures 7–11).  Regular figures with
values of  V, E and  F other than those above do not exist!  You
see that one can use ideas from one field (topology) to address
problems in another (geometry).  Similarly, topology and geo-
metry also have applications in physics.  Our understanding of
one field is often improved  by crossing bridges to other fields!
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Figures 7–11:  Tetrahedron;
Octahedron;  Icosahedron;
Cube; Dodecahedron.
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