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Introduction

We all know that in a fluid (liquid or gas), pressure or density
waves can be propagated.   If we have a loud speaker activated in
air, the vibrating diaphragm of the loud speaker pushes the air in
front of it.   This causes changes in pressure and density of the air
in front of the diaphragm. This fluctuation in pressure is trans-
mitted through the air.  The velocity of sound in a fluid medium
depends on the adiabatic bulk modulus and the density of the
medium.   As long as the frequencies are within a certain range,
the velocity of the wave is independent of the frequency.   The
product of the frequency and wavelength of the wave is the
velocity of the wave. Since pressure fluctuations take place
adiabatically, these will be associated with temperature
fluctuations in the gas.  Such density fluctuations with accom-
panying temperature fluctuations are a collective excitation of
the fluid. We shall call this first sound.

Second sound is a form of collective excitation in which entropy
(and hence temperature) fluctuations  without accompanying density
fluctuations are propagated in a medium.   Second sound was first
observed in superfluid liquid 4He. It was later realised that
second sound can also be observed at very low temperature  in
crystals. In this article we shall first give a brief account of the
superfluid transition in liquid  helium and then explain the
origin of second sound on the two fluid model.  A brief discussion
of second sound in crystals will be presented in the next part.

Superfluid Liquid 4He

Helium has two common isotopes, 4 He with mass number 4 and
3 He with mass number 3.  4 He is the most abundant isotope.
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Hereafter we use He to stand for 4He.

Liquid He boils under one atmosphere pressure (1 bar) at 4.22 K.
When the liquid is cooled below 2.17 K, it shows very strange
behaviour.  We shall denote liquid helium with a temperature
above 2.17 K as LHe I and liquid helium below 2.17 K as LHe
II.  The thermal conductivity of  LHe II is  a  million  times more
than the thermal conductivity of LHe I.   When the viscosity of
the liquid is measured by a capillary flow  method,  LHe II  does
not show any viscous behaviour.  LHe II is capable of flowing
freely through narrow channels.  But if viscosity of the liquid is
measured by the damping produced on a set of oscillating discs
immersed in the liquid, the viscosity of LHe II appears compa-
rable to that of  LHe I.

The fountain effect in LHe II was first discovered by Allen and
Jones in 1938.  The Figure 1 illustrates the essentials of their
experiment that demonstrated the fountain effect.  A wide bore
U tube has a long capillary of narrow bore fused at one end.   The
U tube is tightly filled with carborundum powder of grain size of
about 1μm.   The channels in such a tight plug of  carborundum
powder are so narrow that they will not allow LHe I to flow
through unless one applies a large pressure to the liquid.   If this
arrangement is suspended in a bath of LHe  II so that the top of
the capillary tube is above the liquid level while the free end of
the U tube is below the liquid level, liquid He flows freely
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Figure 1. Fountain effect in
LHe ll.
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through the carborundum plug to equalise the levels in the two
limbs of the liquid.   If a torchlight beam falls on the carborundum
powder nearer the capillary  a   fountain  of   liquid   gushes  out
of the top of the capillary tube.   More careful experiments show
that the height to which the fountain rises is proportional to the
temperature difference across the carborundum powder.

Two Fluid Model of LHe II

Tisza proposed in 1938 a two fluid model to account for the
strange behaviour of LHe II. The fact that LHe II can flow
through narrow channels without viscous resistance but at the
same time  produces a damping on a set of oscillating discs
immersed in it suggested to Tisza that LHe II is made up of two
components.  These components are chemically indistinguishable
and LHe II cannot be separated into  its components by any
method.   But they have different physical properties.   One com-
ponent has no viscosity and is responsible for  superfluid flow
through narrow channels while the other has viscosity and is
responsible for damping the oscillating discs.  The first component
is called the superfluid component and has a density ρs;  the
second component called the normal component has a density
ρn.   The total density  ρ of  LHe  II is the sum of the densities of
the two components.   The fraction of the normal component
ρn/ρ decreases from unity, at the transition temperature, to zero
as the temperature tends to absolute zero.  On the other hand the
fraction of the superfluid component ρs/ρ increases from zero, at
the transition temperature, to unity as the temperature is reduced
to absolute zero.

When a temperature gradient is established along the
carborundum plug in the fountain effect experiment, a concen-
tration gradient of the normal and superconducting fractions is
also established.   The superconducting fraction is more at the
low temperature end of the plug than at the high temperature
end.   So the superfluid component rushes through the narrow
channels of the plug without hindrance.   The normal component
has a larger volume fraction at the high temperature end of the

To account for

these properties

the two fluid model

was proposed by

Tisza.



GENERAL ⎜ ARTICLE

19RESONANCE ⎜ March  1999

plug.   But the concentration gradient cannot drive the normal
fraction in counterflow to the superfluid component as the
normal component is viscous.   So a pressure builds up at the
bottom of the capillary which forces the liquid to gush out as a
fountain from the top of the capillary.

Tisza also suggested that the superfluid component has no
entropy.   It  is  in  a highly ordered state.   The normal component
carries the entire entropy ρS per unit volume of liquid He II. If
a temperature gradient is maintained across a wide tube conn-
ecting two vertical tubes containing LHe II, the liquid level in
the warmer tube rises above that in the colder tube (see Figure 2).
The pressure builds up to such an extent that  there  is  no
acceleration  of  the  superfluid  or  normal components.   This will
happen when  the pressure difference and temperature differ-
ence are related by

ΔP = ρSΔT . (1)

Thus the height to which the liquid rises in the fountain effect
experiment is proportional to the temperature difference across
the carborundum plug.

The pressure difference  ΔP causes the normal component to
flow by Poiseuille’s flow through the wide channel.  In equili-
brium this flow of the normal component is cancelled   by the
counterflow of the superfluid from the cold to the warm tube.
But the normal component carries away entropy  (and hence
heat) from the warm to the cold end.  The counterflow of
superfluid and normal helium is somewhat analogous to convec-
tion currents in a fluid.  This accounts for the very large heat
conductivity of  LHe II.
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Figure 2. Two cylinders
connected at the bottom
with a wide bore tube. The
two cylinders are filled with
LHe II. If a temperature
gradient is established
between the tubes, the level
in the warmer tube rises to
build a steady hydrostatic
pressure difference      ΔΔΔΔΔP
proportional to ΔΔΔΔΔT. Super-
fluid component flows from
the cold to the warm tube
while an equal amount of
normal component flows in
the reverse direction.
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Propagation of First Sound

If a piezoelectric crystal is put in a bath of  LHe II and is excited
at a certain frequency, it will push both the normal and superfluid
components in front of it. This causes density and pressure
fluctuations which propagate as first sound in the liquid with a
velocity given by

 C1
2 = Ks /ρ . (2)

Here Ks is the adiabatic bulk modulus of the liquid.   In any
liquid, sound waves will propagate with this velocity.   This is
called first sound.   Unless the amplitude of pressure or density
fluctuation  is large, the associated temperature fluctuations  are
very small and can be neglected.

Second Sound

In the two fluid model   Figure 2 a temperature gradient causes a
counterflow of the superfluid and normal components with a net
mass flow ρv given by

ρv =   ρn vn  +   ρs vs =  0.  (3)

If we produce an oscillatory temperature at one point in the
liquid this will cause an oscillatory counterflow of the superfluid
and normal components at that point.   Due to this oscillatory
counterflow density will not change as there is no net mass flow.
So pressure will not change.   However the oscillatory counter
flow will produce fluctuations in entropy.  Oscillations in entropy
will be reflected as oscillations in temperature. Tisza showed
that these fluctuations propagate with a velocity different from
that of  first sound.   The velocity of second sound is given by

         C2
2 = (ρs /ρn) S2 (∂T/∂S)ρ  =  (ρs/ρn) S2 (T / Cv),        (4)

where Cv is the specific heat at constant volume of the liquid.

The velocity will be temperature dependent since all the factors
in the above equation for velocity are significantly temperature
dependent.
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One may give an analogy to second sound from lattice vibrations
in crystals.   If we take a lattice of diamond, the unit cell contains
two chemically indistinguishable but crystallographically non-
equivalent carbon atoms.  One can have two types of long wave
length vibration modes.  In the first mode both the carbon atoms
in the unit cell move together.   This is the acoustic mode
corresponding to the propagation of sound. There is a second
mode in which carbon atoms of one type vibrate against the
carbon atoms of the second type. This is the optic mode. The
vibration of the superfluid against the normal fluid in second
sound is analogous to the optic mode in diamond.   However the
analogy should not be pushed too far.   There is a finite restoring
force proportional to the displacement even at very long
wavelengths in the optic mode of diamond leading to a high
frequency of vibration.   In second sound the restoring force on
the superfluid component  is proportional to the square of the
wave number  (reciprocal of the wavelength λ) and tends to zero
as the wavelength tends to infinity just as for long wavelength
sound.   So the frequency is proportional to the wave number, the
constant of proportionality being the velocity of second sound.

To produce second sound one immerses a heater in LHe II
through which an alternating   current of  low amplitude is used.
If the frequency of the alternating current is f, it will produce
temperature fluctuations at a frequency 2f because the heating
rate depends on the square of the current.   The temperature
fluctuations produced at a frequency 2f in the superfluid can be
picked up by sensitive resistance thermometers.

Experimental Verification

The first experimental verification of Tisza’s prediction was
made by Peshkov in 1946.  He used a resonator like an organ pipe.
Suppose we have a cylindrical tube, closed at one end, containing
a liquid as shown in Figure  3a.   To study first sound we may put
at the bottom a piezoelectric crystal to produce sound waves.
These sound waves will propagate upwards and get reflected at
the liquid surface.   The original and reflected waves will form a
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standing wave pattern in the liquid with nodes and antinodes
succeeding each other at intervals of λ/4.   If we have a moveable
pressure sensor, then it will detect an oscillatory variation of
pressure with maxima and minima.   Replace the piezoelectric
transmitter with a heater, and the moveable pressure sensor with
a moveable sensitive temperature sensor.   We then have a set-up
to detect standing waves of second sound.   It was with such a set-
up that Peshkov measured the standing temperature wave
(Figure 3b).   From a measurement of the wavelength of the tem-
perature wave and the frequency of the heater current one can
calculate the velocity of second sound.

A second method is to send a pulse of current through the heater.
This generates a pulse of temperature near the heater.   This pulse
travels through the liquid and reaches a sensitive thermometer.
By measuring the time taken for the pulse to travel from the
transmitter to the receiver and the distance between the two one
can determine the velocity.

The  temperature variation of the velocity of second sound as
measured by Peshkov is shown in Figure  4.   The sound velocity
is nearly independent of temperature from 1 to 2 K and has a
value of about 20 m/s.  The near temperature independence
arises because the increase in (ρs /ρn)  as the temperature falls is
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Figure 3a. Peshkov’s
resonator for measuring
velocity of second sound in
LHe II.
Figure 3b. Typical standing
wave pattern of second
sound observed by Pesh-
kov in LHe II.
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nearly compensated by the decrease in the other factors, S, T and
Cv.    This   low  velocity   of  second sound between 1 and 2 K is
to be compared with the velocity of first sound which has a value
of approximately 230 m/s.  Below 1 K the velocity of second
sound increases rapidly because of the rapid increase of the ratio
(ρs /ρn).   It becomes difficult to detect second sound   below 1K.

It should be clear that second sound should always be observed
in superfluids.   The observation of second sound can be taken as
a confirmation that superfluid state has been achieved.   Second
sound has been observed in the superfluid states of mixtures of
liquid 4He and liquid 3He .  Pure liquid 3He becomes a super-
fluid below 7 mK and the observation of second sound in liquid
3He below 7 mK was clinching evidence for superfluidity in the
liquid.

Difference with Diffusive Temperature Wave One
can See in a Liquid

If one produces an oscillatory variation in temperature in any
liquid or  solid, a temperature wave is propagated in the medium.
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Figure 6. Velocity of second
sound as a function of
temperature of LHe II as
observed by Peshkov.
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The propagation arises due to diffusion of heat through thermal
conductivity. We may recollect here the  Angstrom’s experiment
for determining the thermal conductivity of a metal rod.   One
end of a long metal rod is periodically heated and cooled and the
temperature is measured as a function of time at various positions
along the length of the rod.   The temperature profile is Fourier
analysed to find the wavelength of the fundamental wave.   The
velocity of the wave is found by dividing the wavelength by the
period of the heating and cooling.   It is found that the velocity
is dependent on the wavelength. The waves are also attenuated
with the amplitude decreasing exponentially with length.   On
the other hand the velocity of second sound is independent of
frequency. If a heat pulse is applied to any liquid, the different
Fourier components of the heat pulse travel with different
velocities through the liquid.   When they arrive at the detector,
the different Fourier components would have acquired different
phases and they have also been attenuated by different degrees.
So the shape of the temperature pulse recorded by the detector is
very different from the shape of the initial temperature pulse.   In
second sound the velocity is independent of frequency and the
attenuation is weak.   So the pulse recorded by the detector has
the same shape as the original temperature pulse.   In the
language of  mathematics, second sound is the solution of a
partial differential equation which is of second order both in
time and in space co-ordinates.   On the other hand the diffusive
temperature wave in a liquid is the solution of a differential
equation which is of first order in time and second order in space
co-ordinates.

In the next part of this article, we will discuss a more microscopic
view of second sound.

In second sound

the velocity of the

temperature wave

is independent of

the frequency. In a

diffusive

temperature wave

seen in all fluids

and solids, the

velocity will be

strongly dependent

on frequency and

the attenuation will

be high.

Address for Correspondence

R  Srinivasan

Raman Research Institute

C V Raman Avenue

Sadashivanagar

Bangalore 560 080, India.

A monument to Newton! A monument to Shakespeare! Look up to the Heaven, look into

the human heart. Till the planets and the passions, the affections and the fixed stars, are

extinguished their names cannot die.

John Wilson

Quantum Chemistry and Spectroscopy


