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Do H-functions always increase during Violent Relaxation?
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Abstract. Recent work on the violent relaxation of collisionless stellar
systems has been based on the notion of a wide class of entropy functions. A
theorem concerning entropy increase has been proved. We draw attention
to some underlying assumptions that have been ignored in the applications
of this theorem to stellar dynamical problems. Once these are taken into
account, the use of this theorem is at best heuristic. We present a simple
counter-example.
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1. Introduction

A long-standing and well-known problem concerns the distribution of light (and hence
of stars) in elliptical galaxies. The stars seem to be so smoothly distributed that it is
widely believed that these systems are ‘relaxed’. There is very little gas in ellipticals and
the dynamics is governed by the mutual gravitational attraction between stars. So it is
natural to look for some relaxation process that leads self-gravitating systems to some
equilibrium state.

Just like the motion of molecules in gases, the motion of stars in galaxies is described
by the Boltzmann equation. There are so many stars in a galaxy that the time over
which collisions are effective turns out to be much longer than the galaxy’s age. So
galaxies are well-approximated as collisionless stellar systems and any relaxation
process should be collisionless. Lynden-Bell (1967) suggested that if the stars were
initially distributed in a state very far from equilibrium, large fluctuations in the
galaxy’s mean field could scatter stars, allow them to exchange energy and equilibrate.
He called this ‘violent relaxation’.

In the kinetic theory of gases, the form of the collision term in the Boltzmann
equation singles out Boltzmann’s H-function as the unique function that increases with
time. While the Boltzmann equation is inherently irreversible in nature, the equation
that describes galaxies does not have the collision term and is symmetric under time-
reversal. Tremaine, Henon & Lynden-Bell (1986, hereinafter THL) have addressed the
problem of entropy increase for collisionless stellar systems during processes like
violent relaxation. THL consider entropy functions of a more general form than
Boltzmann’s H-function. They have proved a theorem concerning entropy increase.
We disagree with their interpretation and its application to stellar dynamics. We give a
summary of THL’s proof of their theorem in Section 2 and discuss the assumptions in
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Section 3. A simple example that invalidates THL’s interpretation is presented in
Section 4.

2. The H-theorem of THL |

The time evolution of collisionless stellar systems is governed by the collisionless
Boltzmann equation (CBE):
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where f (x, v, t) dx dv is the mass in phase volume dx dv and ¢ is the mean gravitational
potential

+v

px, )= —G [LXDy, 2)
‘ X —X/| '
Unlike the Boltzmann equation for gases, the CBE is symmetric under time-reversal.
Very few properties of the time-dependent and nonlinear CBE are known. So any
general result is very useful. :
THL define H-functions as _

H[f1=- [C(f) dxdv 3)

where C is a convex function with C(0)=0. Time evolution governed by the CBE
conserves phase volumes and densities. So the contribution of any phase ‘element’ of
density f and volume dxdv to H does not change with time. Therefore H[ f]1is
conserved in time: '
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Incidentally, the convex property of Cis not necessary for (4) to be true; it is enough that
C is a function of f alone.

THL partition phase space into macrocells each of volume AxAv. They average
f(x,v,t) over these phase volumes to obtain a coarse-grained distribution function
F(x,v,t). The convex property of C implies that at any time
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regardless of how exactly phase space is partitioned. To prove their theorem THL
assume that the system was prepared in a state for which Jf=F atsome initial time t=t,.
This implies that

| HIFG=HIf@) ©
At some later time ¢,>¢,, F(t,)# f(¢2). So, from (5) we have - o
| HIF(t,)]> H[f(z,)]. B
From (4) we know that ‘ ‘
| HLf(t)]=H[f(t,)] ®)
SO
| H[F(t,)]> H[F(t,)] N 9)

THL argue that inequality (9) implies that H(t)is a monotonically increasing function
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of t and that ‘the direction of the arrow of time has been determined by the assumption
that f=F at t=t,’. They use their theorem as a basic criterion that must be satisfied by
the evolution of stellar systems during processes like violent relaxation and their paper
contains many examples. Further, they prove a theorem on mixing during violent
relaxation. We discuss their proof and applications in the next section.

3. Comments on the H-theorem of THL

Although we agree with THL’s derivation of (9), we disagree with their interpretation
and applications of the same theorem. It is not clear to us that the particular choice of
initial state f=F is the natural one and we note that the validity of inequality (9) hinges
on the assumption that f=F at t=t,. Even if f=F is a reasonable initial state, we
disagree with THL’s conclusions that by deriving (9) they have proved that H(t)
increases monotonically with ¢ (for brevity we use H(f) to denote H [F(t)]). We note
that H(t3)> H(t,) and H(t,)> H(t,) for ty>t,>t,, do not imply that H(t;) > H(t,). In
other words, inequality (9) does not imply that H(r) is monotonically increasing
function of ¢, even though H takes its smallest value at ¢t = t1, and this is only because of
the assumption f=F at t=¢,. We have shown that there is no arrow of time in the
problem.

We also wish to point out that if the evolution of the system was collisionless for

t<t;, THL’s proof of (9) would imply that H(t)> H(t,) for t<t, also. Therefore the
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Figure 1. General behaviour of H as a function of time; (a) the solid curve is for a system
showing unmixing behaviour and the dashed curve is for a system showing mixing for t<¢,,
while (b) shows H.for a mixing system.
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general behaviour of H is like the solid curve in Fig. 1a rather than Fig. 1b as claimed by
THL. THL do not discuss H(z) for t <t,. They assume that the system was formed at ¢,
If the processes that brought about the special state f=F were collisional (e.g. the
formation of the stellar system from gas clouds) t:en the general form of H could be like
the dashed curve in Fig. 1a for t<t,. For t>t,, H is still the solid curve. In the next
section we present a simple model which might clarify the issues involved.

4. A model showing unmixing behaviour*

Let us consider an ensemble of anharmonic oscillators each of whose members is
described by a Hamiltonian

- E=E(J) (10)
J, 0 are action-angle variables. The equations of motion are
. dE
J=0, =—. 11
0,0=—7 (11)

The evolution in time of this ensemble is shown in Fig. 2 where t, > t, > t,. It is assumed
that dE/dJ > 0. The precise functional form of E(J) is unimportant. The members of the
ensemble are distributed in phase-space (i.e. the J-6 plane) with density f(J, 6, t). For
simplicity we define coarse-graining as integration over J to get the coarse-grained
distribution function

]

F@, t)= j mf(J, 6, 1) dJ. (12)

THL’s coarse-graining scheme applied to our ensemble would involve averaging over
some (macro)cells with some spread in both J and 6, while we have chosen to integrate
over J to get the coarse-grained function. The purpose of this example is to show that H
does not monotonically increase with ¢, i.e. unmixing behaviour. The differences
between THL’s method and our method of coarse-graining will not affect our
conclusions. '

H-functions are defined in a straightforward manner

H(p)= —J" CLF(, 1)] df (13)

where C(F) is a convex function. The Hamiltonian evolution of the ensemble preserves
phase volumes and densities just like the collisionless evolution of stellar systems. H(t)
defined in (13) takes its smallest value at t =¢, when the system is in a specially prepared
initial state. This is analogous to the special initial state f=F at t =t . in THL’s paper. It
is easily verfied from Fig. 2b and Fig. 2c that H(t,)> H(z,) and H(t,)> H(t,) where
t.>ty >, This is analogous to THL’s derivation of (9). We wish to point out that our
model shows unmixing behaviour: H(t,)< H(t,) even though t,>t,. This is easily
verified from the functional form of F sketched in Fig. 2b and ¢ (we note that [z F(6,1)
dfl is conserved in time). So H(t)isnot a monotonically increasing function of t. Thisisa

special example, but enough to show that the general form of H(z) s like the solid curve
in Fig. 1a rather than Fig. 1b.

* This example is due to Rajaram Nityananda.
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Figure2. Evolution in time of an ensemble of anharmonic oscillators; (a) the specially prepared
initial state at t, for which H is minimum, (b) ensemble at ¢, for which H is maximum, (¢) ensemble
. at a later time t, for which H takes an intermediate value.
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5. Conclusions
THL state that all the properties of H-functions presented in th'eirjpaper are well known

and that only the applications to stellar dynarsiics is new. ‘In our opinion THL’s
applications of their theorem to stellar dynamics is questionable to the extent that they

- have not proved that H(t) increases monotonically with ¢ even for their special choice of

initial state. The situation is entirely parallel to attempts made early in this century
(Tolman 1938; Ehrenfest 1912) to discuss entropy increase from Liouville’s equation
(whichisa collisionless equanon in 6N dimensions). All these discussions show that the
general behaviour of H must be like Fig. 1a (solid curve). But this does not detract from
the practical usefulness of the principle and the same could be true in the present case.
Unmixing behaviour like Fig. 2 may be transient and rare but-this is an additional
hypothesis.

Independently of this work de Jonghe (1987) has pointed out that H(t) need not be a
monotonic function and noticed the difficulties with the THL interpretation of their
entropy theorem.
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