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Neutrinos in gravitational collapse: Analysis of the flux profile
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Abstract. The flux profile of the neutrinos emitted from a collapsing spherical object, as seen
by a remote observer is studied. The model of the collapsing star consists of the Friedmann dust
interior matched onto the Schwarzschild exterior. It is assumed that the neutrino emission occurs
from an interior shell in a very short time interval. It is found that the nature of the flux profile falls
into four distinct categories depending on the progress of collapse. Interesting features such as
bursts, discontinuities, decay, etc are observed when the collapse has sufficiently progressed.
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1. Introduction

In recent years, the influence of strong gravitational fields on neutrinos has been studied
in different physical situations. A general relativistic description of neutrino transport
in spherically symmetric, static compact objects was given by Kembhavi and
Vishveshwara (1980). They examined the massless Dirac equation in the Schwarzschild
interior matched onto the Schwarzschild exterior. Iyer et al (1982) investigated the
behaviour of neutrinos in collapsing objects by employing the Dirac equation. This
work complemented an earlier paper by Dhurandhar and Vishveshwara (1981) and
yielded results strikingly similar to those of the latter although the formalisms followed
in the two papers were different. The present study is a continuation of the work
presented in the paper by Dhurandhar and Vishveshwara (1981) which will henceforth
be referred to as paper I.

We shall assume the same idealized model of gravitational collapse and the
corresponding background spacetime geometry as was considered in paperl. A
spherically symmetric star undergoes collapse due to its own gravitational field and
emits neutrinos from its interior. The interior geometry of the star is taken to be that of
Friedmann dust (pressure zero) which is matched on to the Schwarzschild exterior
metric at the surface of the star. In the range of energies considered, the neutrinos can be
represented in the geometric optics limit to a good approximation, that is, the neutrinos
can be assumed to describe null geodesics in the background geometry. The neutrino
trajectories have been investigated in detail in paper 1. The confinement (the capture of
the neutrinos by the eventually formed blackhole) and the escape to infinity of the
neutrinos have been examined in relation to the initial conditions during their emission.

In the present paper we apply these considerations to compute the flux of neutrinos
as received by an observer sufficiently far away from the collapsing star. In §2 we derive
* an expression for I(t), the neutrino flux as a function of the arrival time ¢. In §3 we first
discuss the arrival time ¢ as a function of the emission angle . The nature of the
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function t(y) depends crucially on the epoch at which the emission occurs. We then
proceed to examine the flux profile I (¢) based on the classification of y — ¢ correlation.
In the concluding section the significance of these results is discussed.

In as much as we have invoked the geometrical optics limit and assumed that null
geodesics describe the paths of propagation, our formalism is applicable to any zero
rest-mass particle or field and it is not necessarily confined to neutrinos. In this sense
‘neutrino’ can be treated as a generic term. The changing characteristics of the null
geodesics and the energy flux carried by them not only act as probes of the evolving
spacetime geometry, but also provide information on the collapse dynamics. However,
throughout our discussions we have implicitly assumed that the infalling matter is
transparent to the null geodesics in order to isolate only the general relativistic
gravitational interaction. This assumption is not valid for photons. In the case of
neutrinos there can exist astrophysical conditions under which our calculations are
useful, perhaps with some modifications. All our computations would be relevant to the
propagation of gravitational radiation generated by residual asymmetries inherent to
the collapsing star. Thus, while we can hope that our results would be applicable to
some realistic astrophysical situations, the problem we have studied is of significance in
presenting a fully general relativistic picture of collapse dynamics as conveyed to a
distant observer.

2. Derivation of the flux I as a function of the arrival time ¢

2.1 Trajectory analysis

Before discussing the derivation proper, it is necessary to mention briefly the relevant
quantities required. "
The interior geometry (Friedmann dust) of the collapsing star is described by the line
element, _
ds? = dT? -S%(T)[ (1 —«R?)~!dR? + R?*(d6? +sin? 6 de?)], (§)]

where c = 1, G = 1 and a = 2m/R}. Here (R, 0, ¢) are the spatial coordinates which
remain constant along the world line of the comoving observer and T the proper time.
The R-coordinate of the particle on the boundary is R,. The expansion factor S(7T) is
given by the parametric representation

S =cos?y,
T = (x+singcosx)/ \/o. @
The external geometry is Schwarzschild and is given by
-1
ds® = (1 —sz)dt2 - (1 —Z?) dr? —r?(d6? +sin®0d¢?), 3)

where m is the mass of the object in geometrical units. We match the components of the
metric tensor of the two geometries and its derivatives at the boundary R = R,. We
have r = RS(T) and set t =0 when T =0, that is the collapse begins at the
Schwarzschild time ¢ = 0. Owing to the spherical symmetry of the situation one can
without loss of generality assume the trajectories to lie in the § = /2 plane. The null
geodesics then depend essentially on three parameters namely R, the radial coordinate



Flux profile of neutrinos 161

from which the neutrino is emitted, x, the epoch of emission and ¥, the angle the
neutrino trajectory makes with the outward radial direction as measured by the
comoving observer.

A brief account of the trajectories will be given here, a more detailed discussion being
presented in paper I. Due to the various symmetries the first integrals are easily
obtained, namely,

dT
Sd—l =T,
de
2¢2°¥
R?S* o =h @)
The radial first integral is found to be
- S*(dR/dT)* = (1 —aR?)(1 — B*/R?), )

where
B=h/T = R,ysiny,

is the impact parameter in the interior geometry.
In terms of the time coordinate , (5) is integrated to provide the epoch x, when the
neutrino arrives at the boundary R = R,. The value of x, is given by

— {XO"'%[XI(RO)_Xl(Rb)] for Yo < m/2 6)
* 7 o =3[t (Ro)—x1(RY)] +n/4  for Yo > n/2
where

. 1 +aR?sin?y, —2¢R?
R) =sin™! 2 2 :
11(R) = sin ( 1 —aR}sin®y, )

The time evolution of the trajectory may be continued to the point r =r, in the
Schwarzschild geometry well outside the object. The arrival time ¢ of the particle at ry is

given by
r 2 -1 2 -1/2
t=ty+ f ’ (1 ——'3> [1 —b—2<1 —2—'")] dr, (7
r r r

s
where

ry = R, cos? x,, 8)

R i R I
tb= (5;2-— ) (Rb+4m)xb+Rb<2_"b;—l) SNy, cosxb
R, ¥
(ﬂ—l> +tany,
R, \}
(m'Q‘m“

and b is the impact parameter of the particle in the Schwarzschild geometry. The time
constant ¢, is obtained from the following considerations. The collapse begins at ¢t = 0
from rest [(dr/dt)|,., = 0] and the particle on the boundary r = R, describes a
geodesic. This particlc can be assigned both the time coordinates x, and ¢,. Then the
relation between y, and t, can be obtained simply from the geodesic equations.

A similar analysis for the ¢-coordinate of the particle trajectory yields the following

©)

+2min
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relations:
_ ) %o —3[0:1(Ry) —@,(Ro)]  for Yo < m/2
@0y = 3 (10)
0o +3[01(Ry)+9,(Ry)]  for Yy >n/2,
where
2 cin2a, _ 2 /R2YVcin2
,(R) = sin~* 1+ aR3sin® Y, 22.(R(,/R )sin® Y 1)
1 —aR3sin y,
and

r 2 -1/2
=@t obr_z l—b— 1—2—m dr. (12)
" r? r

The matching of the metric components across the boundary of the object yields the
Jacobian matrix between the interior and the exterior coordinate systems. Therefore
the tangent vector components of the trajectory in the exterior geometry are
determined in terms of the tangent vector components in the interior geometry. The
relation between the time-components furnishes the spectral shift for the particle

2 2 )
P2 [(1-aR} - (@)} tan y, (R} — R} sin? wo)i](l ——'") (13)
S Xb ro

1+4z=

The @-components of the tangent vector at the boundary yield a relation between the
two impact parameters B and b, namely,

b = Beos? z,/[(1 —aR2)! — (@} tan z, (RZ — REsin? Yo )t ]. (14)

The radial velocity component at the boundary in the Schwarzschild geometry shows
interesting behaviour. For ¥, ~ n/2, R, ~R, and advanced epoch x, the radial
component of the velocity can assume negative values. This is the phenomenon of
backward emission which has been fully analysed in paper I. The backward emission of
the particle is responsible for a further delay in the arrival time.

2.2 The time variation of the flux

We assume that the emission of neutrinos takes place uniformly on a spherical shell
lying inside the collapsing object; that is, the sources are of equal strength and that they
are distributed uniformly over the entire shell. Further, it is assumed that the emision
ocurs in a ‘flash’, emitting a finite amount of energy in a very short time interval. Also
each source sends out neutrinos isotropically as seen by the comoving observer in the
Robertson-Walker geometry. Under these circumstances we investigate the flux of
neutrinos as a function of time as seen by an observer sufficiently removed from the object.

In general, ¢, the arrival time of a neutrino at r = r, is a function of the initial
parameters y,, R and /. But as we have assumed that the emission occurs at a single
instant y, and from a shell of fixed radius R,, the arrival time ¢t depends only on .
(Henceforth we drop the subscript ‘zero’ attached to the initial parameters). Therefore
the variation of ¢ with respect to y is of prime importance in our considerations. We
shall discuss t as a function of  in the next section along with the flux profile. These two
functions are closely related. This will be clear when we derive the expression for the
flux as a function of the time of arrival.

In the general case the emission takes place from a shell of radius R < R,. In order to
simplify the geometry of the neutrino trajectories involved, which enter into our
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derivation, we shall treat the case R = R, in detail. For R < R,, the geometry will be
somewhat more complicated, but the derivation will follow the same pattern. Figure 1
shows the neutrino trajectories in the @ = n/2 hyperplane, projected on to the (r, ¢)
plane from the (¢, r, ¢) space. We consider a small element of area AB of the surface of
the sphere r = r,, at the observer’s position. We take the @-coordinate of A to be zero.
Let 8¢ be the height of the elementary area AB. We now consider all those neutrinos
which pass through this area between the time instants t and ¢ + At. The energy AE of
these neutrinos is computed and the flux I(¢) follows on taking the limit of AE/At as At
tends to zero.

We assume for the time being that t is a strictly monotonically increasing function of
. In general this is not the case but the expression for I(t) then, can be obtained in an
obvious manner from the simpler case which we treat now.

We choose points A’ and B’ on the shell R = R, in the following manner. The null
geodesic emanating from A’ passes through A at time t and the null geodesic from B’
reaches B at t+At. Let OA’ make an angle ¢ with OA. Let Ay be the angle
corresponding to At, that is, the neutrinos emitted between Y and Y + Ay reach the
sphere r = r, between ¢ and t + At. Also as ¢ is a function of i, one can associate an
angle A with Ay and hence with At. Since there is spherical symmetry, the null
geodesics can be rotated about the origin O. Then it is easy to check that the angle
between OA’ and OB’ is Ap + J¢. B’ has the p-coordinate ¢ + Ag +6¢. Only those
neutrinos emitted between the points A’ and B’ pass through AB during the specified
time interval [¢, t + At]. One can see, however, that for emission sources lying at an
angular distance less than 8¢ from either 4’ or B', the neutrinos pass through only a
portion of the area AB in the specified time interval. But if we choose ¢ < A this
contribution is negligible and may be omitted from our calculations. Let 6y be the
angle corresponding to 3¢ for an emission source C’ lying between A’ and B'. The
neutrinos emitted between y and ¥ + 8y will pass through 4B somewhere within a very
small time interval contained within t and ¢ + At. If one rotates the diagram about OC’

Figure 1. The figure shows the null geodesics emanating from A’ and B’ which reach A and B
at times ¢ and t + At respectively. The points 4’ and B’ lie on the shell R = R, which has
neutrino sources distributed uniformly over it. 4B is the elemental area at r = rg at the point of
observation. C’ is a typical point lying between 4’ and B’ which emits neutrinos that
pass through AB in a very small time interval lying between t and ¢ + At. The angles Ap + o9
subtended by the arc 4’ B’ at 0 and &y between C’ Band C’ A have been exaggerated for the sake
of clarity in the diagram.



164 S V Dhurandhar and C V Vishveshwara

one sees that an enezgy proportional to 2= sin Y 3y is distributed over the solid angle
27 sin @ 6¢ swept by AB. A similar rotation about O 4 shows that the number of sources
which contribute to the flux at AB is proportional to 2z sin ¢ Ag. Taking the spectral
shift of the neutrinos (1 + z) also into account it is possible to write the following
expression for I(t).

2nsiny 6y
2nsin @ ¢

Taking limits as both At and 3¢ tend to zero and omitting the constant factors we have
the following result

1(t)Atcc 2nsinpAp(l +2)7 %

siny
(1 +z)dt/dy (15)

In this derivation we have assumed that the emission occurs from the surface R = R,.
However, (15) remains valid for values of R less than R,, where ¢ and z are calculated
using this value of R.

Secondly, when ¢ is not a monotonic increasing function of ¥ (15) has to be suitably
modified. Fortunately, the alteration is simple. In our problem a single value of ¢
corresponds at most to two values of i say y, and y/,. The total flux [ is then just a sum
of the flux strengths corresponding to ¥, and y,. In the physical picture there are two
rings of sources on the shell with p-coordinates ¢(y,) and ¢ (,) which contribute to
the flux at the time t. Thus, (15) in this case is replaced by

siny sin y
I =] Sn¥ __smy | 16
« [(1+z)|dt/du//|]¢=¢l +[(1+z)|dt/d¢|]w=¢z (16)

The modulus dt/dy is taken to ensure that the contribution from each term on the right
side of (16) is non-negative.

It may be observed from (15) and (16) for I (¢) that the arrival time ¢ as a function of
requires a closer scrutiny. We devote the following section to this aspect and study its
effect on the flux profile.

I(t) =

3. Discussion of the results

In this section we discuss the arrival time ¢ of the neutrino as a function of the angle of
emission . Further, we apply these results to investigate the flux I as a function of the
arrival time t. The discussion may be divided into four cases. We take up each case in
chronological order, beginning with the start of the collapse.

Case (a)

We examine the situation in the early stages of the collapse. In this case the gravitational
effects are minimal. There is no confinement of the neutrinos or any delay in their time
of arrival due to the neutrinos circling around the collapsing object. The scenario is not
. dissimilar from the one in the absence of gravitational field. Both ¢(y) and 1(t) are
monotonic increasing functions of their respective arguments. Both these functions are
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Figure 2 a. The undashed curve of the unscaled flux-intensity / is depicted in the figure as a
function of the arrival time ¢ for the early stages of the collapse. The flux intensity is seen to
grow monotonically until finally it abruptly falls to zero. The dashed curve shows the ¢ —t¢
correlation.

depicted in figure 2a. The greater the value of y the longer it takes the neutrino to reach
ro with the neutrino having emission angle = = arriving last at t = ¢,. I(¢t) gradually
increases with ¢ until at t = ¢, the flux abruptly falls to zero. One also observes that the
slope of the curve t = t(y) becomes zero at y = n. Indeed, differentiating (7) with
respect to ¥, we have,

dt —dl"dx”+bﬂ "o dr
dy ~dg, dy " dy ,,r2{1_5<1_2_m>}i

dr, 2m b? 2m\ | !
“S{0-3) 502 "

We note that (dy,/dy)|,_, = (dr,/d¥)|y -, = 0.

Also b = 0, since the neutrino with y = = travels radially. This shows that (d¢/dy)
vanishes at ¥ = n. '

From (15) it might seem that the flux strength grows without bound as y approaches
n. However, one must bear in mind that sin  also vanishes as Y tends to w and hence it is
necessary to evaluate the limit siny (dt/dy)~!. This limit which is essentially
[(d?t/dy? )|y =x] ~! turns out to be finite and negative in value during the early stages of
the collapse. In fact this case deals with the regime for which (dt/dy?)|, - . is negative.
However, for a more advanced epoch (d%t/dy?)|, - , vanishes and changes sign. This is
discussed in case (b).




166 S V Dhurandhar and C V Vishveshwara

Case (b)

We investigate the situation for more advanced epochs, and more precisely, when
(d*t/dy?)|, ., changes sign and becomes positive and ¢(y) remains finite for 0 <
¥ < m. A typical curve ¢ (¥) is shown in figure 2(b). As  varies from 0 to =, the time of
arrival ¢ at first increases monotonically, reaches a maximum at ¢t =¢,, and then
decreases, finally attaining the slope zero at y = n. This behaviour of ¢ () réflects on the
shape of the flux profile. The flux profile possesses two distinctive features:

(i) A burst which occurs at the tail end of the flux function.

(i) A discontinuous increase in the flux at: = t,, where t denotes the arrival time of the
neutrino emitted with = #n. The reason for the burst is that d¢/dy vanishes at the
maximum of the curve ¢t = t(¥), consequently I (¢) tends to infinity as ¢ approaches t,, as
can be seen from (15) or (16). The necessary condition for the burst to occur is that
(d2t/dy?)|, - . be positive. It may be remarked that this burst is a reflection of the fact
that we have chosen the emission to occur in a ‘flash’, that is the flux at the source of
emission is infinite.

The discontinuity in the flux function occurs for the following reason: For a fixed
value of ¢ < ¢, the neutrinos which arrive at r, at t are emitted from a single ring on the
shell of neutrino sources. There is only one value of y and hence of ¢ which corresponds
to the time of arrival . Hence I(t) is given by (15). However, when ¢ > t,, there are two
values of  and hence of ¢ which correspond to a fixed value of . The neutrinos received
are emitted from two rings on the shell in question. In this case I (¢) is given by (16). We
observe that I(t) is discontinuous at t = ¢,. The discontinuity Al in I(t)att = ¢, is given
by the following expression.

1807 - T ]
v O. R = 1OOm
1601 Rp * 100m 1
[ X =72
1407 .
1207 2
1
. 1
|od‘|[ . 10
{.08

° 10 ' 20 30

Figure 2 b. The figure shows that the dashed curve t () develops a maximum but remains
finite. The undashed curve I (¢) implies that the flux profile has a discontinuity and terminates
in a burst.



Flux pfoﬁle of neutrinos 167

2 -1
Al = {[(l+z)ad¢—tz:| } . (18)
v== .

We now derive a relation between the epoch of emission and the shell radius when the
function ¢ () just begins to develop a maximum for y < =. It is of interest to examine
the situation when the transition occurs from case (a) to case (b). The relation is
obtained simply by setting,

(d*t/dy?)|, ., =0. (19)
Differentiating ¢ with respect to ¥ twice and then setting y = n one obtains the
following result after a fair amount of calculation.

_2r,(1 ~aR})

(d*t/dy?)|, . = 1—2mj/r,

JaR(Ry(1 —aR?} + R(1 —aR}))cos x, sin g,

1-2m/r,
+£§_( "b(l—roz"b) >, (20)
Ry \((1 —aR?)} — JaR, tan x,)*

where r, and x, are defined in (6) and (8) respectively. For a fixed value of R, and r,,
(d%t/dy?)|, - ,isa function of R and x, that is the shell radius and the epoch of emission.
Let F(R, x) denote this function, then (19) implies,

F(R,x)=0. @1

For small values of R the first term in the right side of (20) dominates and the burst
occurs at comparatively later stages.

In the extreme case of the emission occurring from the surface R = R, the relation
(21) reduces to,

r 2m\1/? 2m\'?  [2m\!'/?
(T oy 2m _2m\E_(2m - 2
ro (l R,,) [(1 R,,) (R,,) tanx,,] % @

when r, < ro, one may neglect the second term in the left side of (22) to arrive at a simple

result,
2m
,,:3,,,(1__.&). @3

This is the radius of the collapsing star when the neutrino emitted from the ‘back’ of the
shell reaches the surface on the other side. If one further makes the approximation of
R, > m, itis possible to estimate the epoch when the emission occurred. One solves (23)
for the emission epoch y in this approximation. The result in terms of the radius of the
collapsing object at the epoch of emission turns out to be about 18 m.

We have already remarked that the burst occurs because ¢(y) reaches a maximum.
With the advance of epoch the maximum ¢ = t,, of the curve ¢t = t(}), monotonically
increases and the curve becomes more peaked. This process continues with the progress
of collapse until as y approaches a certain value x,_, t,, tends to infinity (The subscript dc
stands for double cone). In paper I we have seen that the confinement process occurs for
neutrinos emitted between two distinct cones and they are prevented from escaping to
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infinity. A thorough study of the conditions under which confinement occurs is made in
paper I. The confinement process begins when the collapse has sufficiently advanced.
The process starts with the direction of emission for which the particle is confined, lying
in a coincident double cone. This cone gradually widens as the epoch is advanced with
the inner cone becoming degenerate so that only a single cone remains. This single cone
continues widening with the progress of the collapse. The confinement mechanism has
been illustrated in figure 3 by exhibiting the cones at various stages of the collapse. This
instant marking the beginning of the confinement process is represented by the epoch

Xac- Such neutrinos are forward emitted, having ry <3mand b X 3 /3m. As the epoch
X approaches y, , the neutrinos emitted at the epoch yx tend to increasingly circle the
collapsing object in the vicinity of r ~ 3mand are therefore delayed in their transit. This
behaviour causes the maximum of time of arrival t, to increase without limit.

For the flux function I (t), t = t,, is an asymptote. Therefore when t,, tends to infinity
as y approaches y, ., the asymptote gets ‘pushed’ to infinity delaying the burst
indefinitely.

The effect on the discontinuity at ¢ = ¢, is not as dramatic. As t, increases steadily
with the advance of epoch, the discontinuity occurs later and decreases in height.

Case (c)

In paper I it was shown that for X > Xq4c» there exist values of the emission angle ¥ for
which the neutrinos are confined. For values of X R Xgcand close to x4, those neutrinos
are confined whose emission angles lie in the interval [¥,, ¥,]- Neutrinos emitted in the
directions enclosed by the cones with half angles ¥, and ¥, cannot escape to infinity;
hence the nomenclature ‘double cone confinement’. With the progress of collapse ¥/,
finally attains the value n and at this epoch and later, only a single cone exists such that

180 [ : . ; - .

) R +100m
e Rb=100m
% 7320

e 4.07

I

4.03

1.0t

n " L
40 ' 50 60 70

Figure2c. Thedashed curve t(y) tends to infinity as Y approaches the critical values y, and
¥1. The undashed curve 1(z) possesses a maximum and a discontinuity, which is smaller in
height in comparison to case (b). The flux strength finally decays as ¢ tends to infinity.
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Figure 2d. The dashed curve t(¢) tends to infinity as Y approaches a critical value ¢,. The
flux intensity I develops a maximum and then decays for large times ¢.

the neutrinos emitted within this cone will eventually fall into the blackhole. We call
this epoch y,. (the subscript sc denoting single cone). The case under discussion deals
with the epochs y satisfying x4, < Xo < Xg-

A typical curve t(y) for this case is shown in figure 3c. The curve possesses two
asymptotes § = i, and ¥ = Y, which are the half-angles of the two cones. The time of

arrival tends to infinity as y approaches either ¥, or .

=180° Y0 Y2180 Y=0"
(i) (i)

¥,=180 Y0 y,=180 Y20
Giii) {iv)

Figure 3. The shaded regions in the figure show the range of directions in the angle ¥, for
which confinement occurs. The four figures (i), (ii), (iii) and (iv) are drawn for progressive stages
of the collapse. In figures (i) and (ii) the confinement directions are bounded by two cones while
in (iii) and (iv) only one cone bounds the confinement directions.
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One observes, that the function I(t) remains bounded, that is, the burst is absent.
However, as the neutrinos with ¥, < ¥ < = reach the observer at r,, the flux function
still possesses the discontinuity at ¢ = ¢,. Since ¢, is an increasing function of the epoch
the discontinuous jump in the flux is delayed and also diminished in size as compared
with case (b). In fact as the epoch y approaches ,_, r, approaches 2m and as one can see
from (7), the integral diverges logarithmically and therefore ¢, tends to infinity. Thus the
discontinuity is delayed without limit. A typical flux profile I(t) is shown in figure 2c.

One may remark here that this phase of the collapse discussed under this case occurs
for a very small fraction of the time taken for the entire collapse. For R, ~ 100m,

\Xsec — Xgc ~ 1072 radians.

Case (d)

This part of the discussion deals with the last stages of the collapse when the epoch of
emission x > x,.. To get an idea of the numbers involved, if the initial radius
R, ~ 100 m and if the emission occurs from the surface then R, cos? Xsc» the radius of
the object during emission is about 8 m. In this case there is single cone confinement,
that is, there exists a , such that for ¢ > y, the neutrinos are swallowed up by the
incipient blackhole while for ¥ < ¥, the neutrinos escape to infinity. ¥, is a decreasing
function of the epoch y. For surface emission the maximum value of ¥, is obtained
when the epoch is x, . In particular, for R, ~ 100m, y, ~ 140°.

The arrival time ¢ is a monotonic increasing function of  in the permissible range
0 <y < y,.Asy tends to ¢, ¢ tends to infinity ¥ =y, is an asymptote to the curve.
This behaviour of ¢ () gives rise to the following nature of the curve I(¢). Initially the
flux I increases in value, reaches a maximum and then gradually decays for large values
of t. Figure 2d depicts the function £(y) and the flux I(t). Both the features of
discontinuity in the flux profile and the tail end burst are absent in this case.

It is conjectured from numerical computations that these four categories in the
behaviour of I(t) are present for all values of the radius R of the emitting shell.
However, when the shell lies close to the surface these features seem to be more
pronounced.

4. Concluding remarks

In the foregoing we have analysed in detail the profile of the neutrino flux received by a
distant observer. The form of the profile depends (changes) characteristically on the
epoch at which the neutrinos are emitted during the collapse. We have studied the
behaviour for different initial sizes of the collapsing object varying from a radius of
100 m to 10 m. The general features of the flux profile as a function of time remain
basically unaltered. As we have seen, the nature of the flux falls into four distinct
categories. For early stages of emission, when the gravitational effects are minimal, one
observes a gradual rise and a sharp fall in the flux. On the other hand, if the collapse has
reached an advanced stage, the flux after a gradual rise, decays slowly. Between these
two extreme cases there are two separate intermediate stages both exhibiting
discontinuities, with the earlier one ending in a burst. The progressive behaviour of the
neutrino flux therefore indicates the size reached by the collapsing object at the moment
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of emission. Thus the signature of the collapse process is impressed upon the escaping
neutrinos.
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