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Abstract. The thermal properties of ionic crystals are analysed using the variational
principle of classical statistical mechanics. The Einstein and Debye pictures of the
lattice vibrations are adopted as trial Hamiltonians. No explicit calculation of the
lattice spectrum is needed. The variational result for the thermal expansion in the
Einstein picture is identical to that recently derived by Narayan and Ramaseshan by a
physically motivated thermali force picture. The agreement with experimental values
in the alkali halide family of crystals is surprisingly good, the root mean square error
.being about 14%,. The parameters in the interionic potential used are obtained from
the lattice spacings and compressibilities of the crystals and not from anharmonic
properties. The Debye picture gives about equally good results for the thermal
expansion, but better results for the thermal vibration amplitudes of the ions. It
differs from the Einstein picture in incorporating correlated vibrations of atoms and
in having an explicit Coulomb contribution to the thermal properties. It is suggested
that the theory given in this paper has a useful role to play in studies of thermal
expansion and phase stability for large families of ionic crystals when combined with
semi-empirical theories.
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1. Introduction

Narayan and Ramaseshan (NR) (1980) have recently proposed a computationally
simple and physically appealing scheme for calculating the high temperature (classical)
thermal expansion. of an ionic crystal directly from the interatomic potential without
computing the lattice vibration spectrum. The ions are taken to vibrate independently
as in an Eipstein model and this leads to a mean square vibration amplitude for
each type of ion. When averaged over this thermal motion, the force between two
ions acquires a ‘rectified’ component, linear in the temperature, which is introduced
into the equation of equilibrium for the crystal. The resulting values of thermal
expansion are in good agreement with experiment considering the simplifying assump-
tions of the theory and the absence of any free parameters. In this paper, we attempt
to understand the success of this theory and the nature of the corrections to it.

Our starting point is the variational principle for the free energy in statistical
mechanics (reviewed for example in the text book by Feynman (1972)).This variational
principle was given by Gibbs (1902) in the classical case and generalised to quantum
systems by Peierls (1934).The true Hamiltonian H of the crystal is replaced by a trial
Hamiltonian H, whose free energy F, is known, and which allows us to compute
thermal averages exactly. In this paper we choose H, corresponding to (a)_ the
Einstein model, specified by force constants k for the two kinds of ions, and (b) the
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Debye model, specified by the velocities ¢; and c, of longitudinal and transverse waves,
We calculate (H — Hy)o which is the average of the difference between the true
and trial Hamiltonians, computed using H,. (The angular brackets denote a
thermal average). The variational principle states that we can add (H —H,)
to F, to get an upper bound for the free energy F of the true Hamiltonian H.

F<Fy+ (H—Hpo= (HYy — TSy, )

S, is the entropy corresponding to H, given by TS, = {Ho)o — F,. Minimising
the right hand side of (1) with respect to the parameters k, (for the Einstein model)
or ¢, (for the Debye model) gives us the best value of the free energy, though not
necessarily of its derivatives. We discuss the Einstein model in the next section and

the Debye model in § 3.

2. The Einstein model

The entropy of an oscillator of mass m, force constant k and frequency v is given

by
s=ty(l) ko (£ /)

where kg is the Boltzmann’s constant. Here and later we omit terms not depending
on the lattice spacing since these do not affect thermal expansion. For the same
reason the kinetic energy is also omitted in what follows. By the carlier discussion,
the trial free energy using the Einstein model is given by

F. = (HY — 3Nkg T GInks +3Ink) )

where N is the number of jon pairs in the crystal. We need to evaluate {H Y, which
is the true crystal potential averaged over the motion of Einstein oscillators. For
this we introduce x,, ¥, Z,, the Cartesian components of the displacements of posi-
tive and negative ions from their sites in the lattice. As i8 usual in lattice dynamics,
we expand the potential energy as a function of these displacements, the zero order
term being the potential energy of the ideal static lattice.

U=Uo(r)+1i.+qd.+cu.+qt.+.. @

In (4) we have just indicated schematically the terms which are linear, quadratic,
cubic and quartic in the displacements. The linear terms vanish in the high sym-
metry structures such as NaCl and CsCl which are considered here. Since we need
the thermal average of (4), clearly the cubic terms do not contribute. The mean
- square of any Cartesian component of the displacement of the ion isgivenby k B Tik,
for the Einstein model, while the product of two different components or the dis-
placements of two different ions averages to zero. Thus among the quadratic
terms in (4), only those of the form 3 2 + )2 + z}), survive. The coefficient of
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such a term is the second derivative of the potential energy of the crystal with respect
1o the displacement of one atom, the others being held fixed. This is just the quantity
which occurs in the NR theory and is easily calculated as follows. Let W, be the
combined repulsion and van der Waals energy for a nearest neighbour unlike ion pair -
(separated by r)and W, and W__that for second neighbour like ion pairs (separated
by 2br). Letn; and np denote the number of first and second neighbours (taken to
be the same for both types). The average of the quadratic terms is then found to be

Nn kpT kgT\ Nny kgT
o= e (127 BT) L
{q >o 3 (v ) %, P 3 (VEWiia x.
. kgT B
(VW 2 § : )

In equation (5) the potential W, between nearest neighbours is to be evaluated at
r, while W, and W__, which act between second neighbours, are to be evaluated
at 2br. This is also true of the derivatives of the potential with respect to distance
like V2 W,_, etc., as indicated by the suffixes r and 2br. There is no contribution
to (5) from the Coulomb potential since its Laplacian vanishes.

Liebfried and Ludwig (1961) have shown that the contribution of the quartic
terms to the free energy is of order (kgT)*. As also discussed by these authors,
there is a contribution to the free;energy, also of order (kgT)?, coming from the square
of the cubic term. This is a fluctuation effect not included in the right side of equa-
tion (1). We therefore choose to exclude the contributions of the quartic terms
from this point. Substituting (5) and (4) into the trial free energy (3) one obtains

F, = U, M v w2 4 ) 2 (VW (___
t o(r) + 5 v w, )( %, 4 . 3 (VW) k+)

kpT kT
(VWL _)(7"-)] — 3N Z_(n ks + k) ©)

We minimise F, with respect to the parameters k. and k_ to obtain the * best " free
energy F,. The result is

. :

K, =" VW, -I; ny V2 Wes _- K., . (7a)

k. = ny Vz W+_';'n2 Vz W_. EK_, (7b)
3NkgT :

Fy=Uy(r)— 2 (n Ky + In K). ' (7c)

Terms not depending on r have been omitted in (7c). . Minimising the variational
free energy F, with respect to r gives the equilibrium lattice spacing at each tempera-
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ture and differentiating this equilibrium condition with respect to T gives the thermal
expansion. The result is

I dr — 3k (K}/Ks + KLJKO)

O = - — = (8)

" (o o o —
y[ug(,.) n ; (KTK;{ : K+)+(K_K_ K_)]

K2

where the primes denote differentiation with respect to r, the nearest neighbour
distance. This is the equation derived by NR from their intuitive force picture, now
emerging from a variational free energy picture. Strictly speaking one should omit
the term of order k5T in the denominator of (8) since neglected effects such as the

cubic and quartic terms in the potential also give contributions of the same order.
However, these terms represent a well-defined physical effect, viz., the temperature
dependence of the (quasi) harmonic frequencies induced by the volume change.
We have chosen to retain this term and compare with the room temperature data
for reasons explained in section 4.

3. The Debye model

We next consider the Debye picture of lattice vibrations, with a doubly degenerate
transverse branch with frequency @ = ¢,k and a longitudinal branch with o = ¢k,
both terminating at k = k p, the Debye cut off wave vector. Insucha description,
the optical modes of the crystal lying in the second Brillouin zone are being approxi-
mated by those modes which lie in the outer half of the volume of the Debye sphere
in k-space. The Debye approximation undoubtedly overestimates the dispersion of
these modes just as the Einstein model neglects dispersion altogether. These two
extremes may be expected to bracket the real situation. We thus have, equating the
total number of modes to the number of degrees of freedom,

3, “?"(k pl2m8 =6 N ._ )

Here N is the number of ion pairs per unit volume. For convenience we relate the
volume per ion pair » to the nearest neighbour distance r by settings = Ar3. (A =2

for the NaCl structure and (8/3 V/ 3) for the CsCl structure). The new features
introduced in the Debye picture are (a) There is correlation between the displacements
of different atoms and so we need to retain terms involving products of two such
displacements when we average equation (4). (b) The second derivatives of the
potential parallel and perpendicular to a bond no longer occur with equal coefficients
since longitudinal and transverse waves travel with different velocities (for details
see the Appendix). Thus, even the Coulomb interaction makes a contribution.
(c) Anions and cations have the same amplitude of vibration since the Debye model
envisages an elastic continuum in which they move\togeiher. However, we expect
on physical grounds that the predicted vibration amplitudes will be greater than in
the Einstein picture since neighbouring atoms can now move coherently and there-
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fore out of each other’s way. The detailed calculation of the variational free energy
for the Debye model is given in the Appendix and we only quote here the final result
for the thermal expansion. First we define two quantities K, and K, with dimensions
of encrgy length—2 which play the same role for longitudinal and transverse waves as
K, doin the Einstein model for the vibrations of positive and negative ions.

” W’— ’ ’ :
Ke=LW _ + IST+ + L (We + W__)+I4(E/£—++

’

W_'_) _ce
R rd

, 2 - Wi, WL\, Cé
K =W+ o vl W) o (S _.__) +£¢ (10)
r R R r

R = 2br = second neighbour distance.

The numerical coefficients /; — I,, 1, — ¢, and C are tabulated in the Appendix
for the two structures of interest—NaCl and Cs Cl. They are related to the correla-
tion function (in the Debye model) for longitudinal and transverse vibrations of
atoms. In terms of K, and K, the final formula for the thermal expansion a has a’
very similar structure to (8)

K 2K;]
i
a=—kpg [K.” ;{(.,2 S an
r[U;,'(r)+kBT§K’K‘K2— B R 'g]
i l t

4. Comparison with experiment

Table 1 shows the results of calculations with equations (8) and (1 1) compared to the
measured values of 3a (volumetric expansion) in crystals of the alkali halide family.
The repulsion potential used is that of Narayan and Ramaseshan (1977, 1978) which
is derived from the lattice spacings and compressibilities of these crystals. Thus there
is no input based on anharmonic properties at all. Wherever experimental data are
available for the mean square vibration amplitudes of atoms in these .crystals, we
have compared them to the calculated values. The overall agreement in both the
theories is good, with the Einstein model results for a being in fact better! However,
one must bear in mind that obtaining theoretical values at room temperature would
require determining terms of order (kg T’ )2 in the free energy. As mentioned before

(6) this cannot be done within the variational framework. One can of course extra-
polate the measured data to absolute zero to obtain the classical crystal values.
We have not performed the detailed fits required for this purpose which involve
separating or allowing for the quantum regime as well as the higher temperature
regime in which terms of order (kg 7)* in the free energy enter (Leadbetter et al 1969).

A quick look at the data suggests that the values extrapolated to 0°K would be about
109, to 20% lower than the room temperature values. Thus it is possible that the
Debye theory is giving us marginally better agreement than the Einstein theory. It
is also clear that the errors are not random, varying systematically across the family.
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while we have no explanation for this systematic variation, it is worth noting that
the thermal expansion is dominated by the third derivative of the repulsion energy
[from the K’ terms in (8) and (11)]. The lattice spacing and compressibility deter-
mine only the first two derivatives, and the third derivative used is obtained from these
by assuming an exponential form for the potential for all the ions. For example,
the (1/r)" form of repulsion would give a third derivative higher by 1/n i.e., approxi-
mately 10%. It is therefore surprising that such a simple form of ‘the potential
combined with the simplified theory of this paper can give agreement at the 15%
level. Certainly, it will require more accurate potentials, quite apart from a more
refined theory, to improve this agreement. Some of the available data on atomic
vibrations in the #'kali halides are given in table 1. These can be compared with the
root mean square amplitudes of vibration at 300 K for the anion and cation of each
crystal, calculated both in the Einstein and Debye pictures. As expected, the vibra-
tion amplitudes are too low in the Einstein picture, while the Debye picture, which
allows for correlated motion of neighbours, gives results closer to expzriment. On
the other hand, the Debye model forces the amplitudes of vibration of anion and
cation to be equal while the Einstein model can give different values especially when
second neighbour effects become important. (Fora model with only nearest neighbour
and Coulomb forces the two amplitudes are rigorously equal in the classical, high
temperature regime). In general, the experimental vibration amplitudes are nearly
equal for the two ions, once again suggesting that the Debye theory is better. Itis
interesting that the 25% lower vibration amplitude in the Einstein model has not led
to a corresponding systematic error in the thermal expansion. This is because the
* thermal pressure ” tending to dilate the crystal depends not only on vibration
amplitudes but on correlations as well and the combined effect of these two on the
thermal expansion (or more strictly on the free energy) has come out correctly thanks
to the variational principle. '

5. Simplified form of the theory

In the expressions (8) and (11) for the thermal expansion, we find derivatives of the
potential to various orders. In the pair potentials W._, W and W__, the leading
term is the repulsion which is usually modelled in the form of exp (— r/p) where p is
a constant for each crystal. Neglecting the van der Waals interaction and the second
neighbour repulsion, each differentiation of the pair potential generates an extra
1/p which implies, from dimensional considerations, an extra factor 1/y = r/p.
This quantity (which corresponds to the exponent » in the 1/r" form of repulsion
energy) takes values near 10 in the alkali halides family. We can separate a zero
orde, term and one of order y in the expressions (8) and (11) for the thermal expan-
sion. The zero order term is the same in the Einstein and Debye models and indeed
represents a general result as we show later below.

Consider now a crystal with only nearest neighbour repulsion W,_=A exp (—rlp).
It is easy to compute the thermal expansion from (8). Retaining only terms up to
order y, we find

KiK. = K'|[K_ = — 1/p.
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Denoting the Madelung constant by a,,, the denominator of (8) at 0°K reads
2a -e2
Uy = — M~ + L g exp (— rip)-
r p* :
From the equilibrium condition
apg €frd =2 A exp (= rlp). (12)
p .

(The error introduced by using the zero temperature equilibrium condition is of a
higher order in kpT). Hence the thermal expansion takes the strikingly simple

form
3. 3k )
o= B = ZB(r+20) = 1000r (1420 g3
( Za.Me a.Me-) ap € (13)
r{— +
s r’p

The Madelung constant has been taken to be 1-75 which is nearly the same for both
the NaCl and CsCl structures. The values of thermal expansion calculated with

equation (13) are shown in table 1.
In the Debye picture, we similarly find

Ki —1[1 + & 'y]; 1.‘1:1_1[1 -—C””’] )
K, P

3k
e
apg C? 3ap\ty 1

— 1000 r (1 + 1147 y) for NaCl and 1000 r (1 4 1:030 ) (CsCl)
15)

The effect of the Coulomb contribution as estimated by the Debye model is to lower
the thermal expansion, as seen by comparing (15) and (13). The leading term is
however the same as that in the Einstein model, viz., a = 1000r and this leads one

to suspect that this is a model independent result.
To derive this we note that to order kg7, the free energy is correctly given by the

quasiharmonic approximation (Liebfried and Ludwig 1961), where we only take
the volume dependence of the harmonic frequencies into account. In this approxi-

mation, the entropy is given by

koT
kp | B)
Zgn(hvl
1
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(where the summation is over the modes of the crystal) and the internal energy by
the equipartition value. From the equilibrium condition oF/or = 0 we get

z (kBT)l.(QZ‘) Lon2Uh® _
- v \or or
i

and on differcntiating with respect to temperature,

I ovi | 0% Uo(") dr
— k 1o =0,
Bzv‘ or + ort dT

zl av”

, 1dr kg ivl or

e a=ld BT (16)
rdT r 2NUg(r)

The dependence of the individual frequencies v, upon the lattice spacing r is different
but we need only an average over thc whole spectrum. We can evaluate this as

follows

E Ohnv=2 E In det M (K), , | San
L or o £
i

where M(k) is the dynamical matrix whose eigenvalues give the frequencies of the
different lattice modes (in this case six) at wave vector k. A typical element of this
matrix is, for example, the force on the anion in the x-direction per unit displacement
of the cation lattice in the y-direction, modulated at wave vector k. All we need to
note is that this has contributions from both the short-range repulsion and the
Coulomb force, which vary as (4/p?) exp (— r/p) and De?/r® (D is a dimensionless
lattice sum). In comparing the two terms we can again use the equilibrium condition
[equation (12)] to conclude that the Coulomb contributions to the dynamical matrix
are of order y compared to those from short-range repulsion. To the lowest order
in y, we then find that (1/v) (9v,/or) = — 1/p for all modes. Returning to (16),
the thermal expansion is given by : ‘.

3k o ) ‘
=5, (18)
aprr e? i

which is jdentical to the zero order term in (8), (11) and (13).. We thus conclude
that the success of the Einstein or Debye pictures in spite of the simplificd view they
take of the lattice spectrum is based on the smallness of p/r (=2 1/10) as well as the
ability of the variational principle to come up with optimal values of the parameters
in these pictures. ‘ . '

P.—5
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. 6. Conclusions

The main result of this paper is that the physically motivated, approximate theory
of thermal effects in ionic crystals given by Narayan and Ramaseshan (1980) can be
derived from the variational principle of statistical mechanics and usually gives
results in error by not more than about 10-159%,. The jon-dependent approach to
repulsion developed by these authors (Narayan and Ramaseshan (1976, 1977, 1978))
enables predictions to be made for crystals and structures other than those used to.
fit the parameters of the theory. This predictive power can now be extended to
thermal effects with some confidence, without either new parameters or elaborate
calculations. Possible applications include thermal expansion and temperature
induced transformations. The theory given in this paper is of course not a substitute
for more sophisticated theories of anharmonicity (Cowley and Cowley 1965; Barron
and Klein 1974) but fits well into the framework of semiempirical theories, such as
that of Narayan and Ramaseshan, which attempt to explore the systematics of the
entire family of ionic crystals in a conceptually and computationally simple way.
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Appendix
Displacement correlation function and free energy for Debye model

Consider a longitudinal elastic wave of wave vector k and maximum displacement u;,
propagating with velocity ¢, along a direction making polar angles (6, ) with the
z-axis. Two atoms separated by a distance R along the z axis undergo oscillations
along z given by u, (0) = u, cos 8 cos wt and u, (R) = u, cos 0 cos (wt — k Rcos 6).
We are interested in the correlation ¢, (R) between the displacements u. (0) and
u, (R) of two atoms separated by R. The contribution of this wave to the mean
square displacement $(0) is } u cos?0 and to the longitudinal displacement
correlation function ¢,(R) = {u, (0) u, (R)) is % uj cos® 0 cos (k Rcos §). The
contribution to the transverse correlation function {u, (0) u, (R)) is } u} sin? 6
cos? ¢ cos (k R cos §). In thermal equilibrium there are no phase correlations
between different modes and their contributions to the mean square amplitude
and corrclotion function can be added. The average kinetic energy in a mode
of angular frequency o is 3 M (w? u?/2) where M is the mass of the crystal and
wu the velocity amplitude. From the equipartition law u* =2kpg TIMw? =
2 kgT/Mc® k* for a mode of velocity c.

By similar arguments, we can find the contribution of the two degenerate
transverse modes of wave vector k to ¢ (0), ¢, (R) and ¢, (R). These are } u? sin® 8,
} u? sin? 0 cos (k R cos ) and } u} (1 — sin® 0 cos? ¢) cos (k Rcos §). Combining
all contributions for a crystal of volume V we have
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cos? @ cos (k R cos §)

By = M 2ap dsk[c,’kz

| B
+cTic—zsm Gcos (k R cos 0)] - v 19
t

gl V sin? 8 cos® ¢
(R = 2 & k| ——————cos (k- Rcos 0
(R = M 2 )3f [ ct k- ( )

+a= Si“flff“z #) cos (k R cos e)]. | (20)
c

The integrals over 6 and ¢ can be done, leaving one over u = kR from 0 to kK, R
where k ;, is the Debyc cut-off wave vector. We can also usc the mass per ion pair

m and the volume per ion pair Ar3. . For the mean square displacement, ¢, (0) =
&, (0) is used. The result is

kgT Ar® (r\ [2l, — &I, 41, o o
Ry=— =zl —— 1t 2/ 21
bR =2 W(R)[ g an
kgT At (ry\ (2 2L —2i,
B = =) e =) 22
b (R = m 4112(R)[c12+ e ] (22)
kpr T 1 2
so=20000u 0 2] -
6x* g 4
kp R ' kp R
where L (R)= f sin u g, LR) = fsmu—usu cosu
0 0

Iy(0) = 21, () = m/2, kp R = 3-89778 (NaCl) = 4-25296 (CsCl).

It is easy to see that u, (0) and u,,, (R) are uncorrelated. With the help of the above
correlation functions, we can compute the trial free energy in the Debye model.
Consider a “‘bond” of length R, lying in the z direction, joining a pair of atoms with
displacements, x; y; z; and X, y, z,. Let the potential ¥ between these atoms be
expressed as a function of the relative displacement

X=x2—x1, _V=y2—y1, 'z=22""zl..
The quadratic terms in the energy read

l_ﬂxz *v
202 T 9x, 9%,

Xy Xy + .on ' _ (24)
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The derivatives with respect to X;, X,, etc., can be expressed in terms of those with
respect to x, y, z. After averaging, products like x; x, and z, z, get replaced by the
corresponding correlation functions ¢, and 4, and we obtain

L (V2V v oV
é(_3)¢(O) - ® -T2 @, 25)
Since the longitudinal and transverse correlations are unequal, the latter two terms
in the above equation do not reduce to V* ¥ and therefore the Coulomb interaction
contribution does not vanish. '

The remaining steps in the derivation of the free energy are quite similar to the
Einstein case, including the minimisation with respect to the characteristic frequencies
(c,/r) and (c,/r) which enter via ¢, and 4,.

The entropy term reads

—TS= —2NkgT [m (?) +2In (fr:)] (26)

and the energy term reads

_NkBT A 5 §(kDr)—210(r)+411(r)
<H>0_ M P ("1 [Vrr( (C,/I‘)z

, g(kDr)-u,) V,(i(kDr) —25L ()
(c:/ry? (ci/r)?

r

Skpr) —21,(0) — 25, (r)
* (@ Ir? )]

+ n, (a similar term for second neighbours) g . 27

The potential ¥ in (27) can be taken as W,_ in the first term, W__and W, in the
second. The Coulomb term has the same basic structure as (25). Itis a sum involv-
ing the correlation functions ¢, (R) and ¢, (R) given in (21) and (22) for all neigh-
bours. In our calculations, we have replaced I, and I; by their asymptotic forms
beyond second neighbours and by their computed values (from (23)) for the first and
second neighbours. The Coulomb contribution to the trial free energy then reads

' NkgT A & _[[e\® [a\?\
<Hcoulomb>o=T4—;;§C((7) ’(7) )

Here C’ is a lattice sum in which the distant terms have a + 1/R*dependence coming
from - 1/R® (second derivative of the Coulomb potential) and 1/R (asymptotic
behaviour of correlations in the Debye model).
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\r ™
sions (26) and (27) with respect to K, and X, to obtain

2 ’
Defining K, = m (ﬁ) ,Kk=m ( c,) C= .4_Awe minimise the free energy expres-
r

rd

2
Ki=m|b Wi+ 1,2 Yo pnor o+ woy e (T B2) “

Wi Wi, Wi ) ce=J

+t3(W+++W__)+t(R ===

K,=m[ +t2 R

The coefficients /; — /,, t; — #, and C are tabulated in table 2 for the two structures
of interest. The free energy corresponding to the above values of X; and KX, leads
to the thermal expansion coefficient a given in (11) of the main text.

Table 2. Some numerical coefficients used in the Debye theory (equation (10))

"NaCl CsCl
h 0-7039 0-8504
A 0-5855 0-7380
I 0-8557 0-3481
A 0-8832 0-3294
n 0-5855 0-7380
1y 1-9932 2-4389
ts 0-8832 0-3295
1, 2-5945 1-0256
C 0-3741 04148
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