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EVERAL disc-shaped molecules are known to

form thermotropic liquid crystals!. The meso-
phases so far discovered fall into two distinct catego-
ries, the columnar and the nematic. In the columnar
type, the discs are stacked one on top of the other in
_columns, the different columns forming a 2D lattice. A
number of variants of this structure have been identi-
fied—hexagonal, rectangular, etc. In the nematic
type, the discs are preferentially aligned more or less
parallel to a plane without any long range positional
order.

The columnar phases represent a new class of ther-
motropic liquid crystal, which in its simplest form may
be looked upon as a system with translational periodi-
city in two dimensions but not in the third. In this note
we discuss the fundamental question of fluctuations in
such a system and their influence on X-ray
scattering—a question of great importance in view of
the fact that the 2D lattice is, strictly speaking, un-
stable2. However, as we shall see presently the
curvature elasticity of the liquid-like columns
stabilizes the columnar structure. It emerges that the
mean square amplitude of the fluctuations is rather
more sensitively dependent on the sample size than in
the case of a 3D lattice, and the Debye-Waller factor is
significantly different from that for the 2D or 3D
lattice or the smectic A liquid crystal.

We shall suppose that the liquid-like columns are
along the z-axis and that the 2D lattice (taken to be
hexagonat) is confined to the xyplane. We shall consi-
der only the vibrations of the lattice in its own plane.
The free energy density may be written as?
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where Band D are the elastic constants for the defor-
mation of the 2D lattice in its own plane, u, and u, are
the displacements along x and y at any lattice point,
and k,; is the elastic constant associated with the
curvature deformation (bending) of the columns. It

may be emphasized that & ,; will be extremely small as
compared with the constants B and D.
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Writing the displacement u in terms of its Fourier
components, i.e.,

u = E‘u(q) expiq-r], (2)
q

substituting in (1) in the harmonic approximation we
get
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and from the equipartition theorem
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where B, = B+ 2D, k, = 2kgs, q3 =

(g:2 + flyz)% and kg is the Boltzmann
constant.

@

An analysis of the stability requires an evaluation of
the mean square displacement at any lattice point.
The mean square displacement is given by
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which may be simplified to
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where A ='(k,/ Bo)"is a characteristic length, d is
the periodicity of the 2D lattice and Lits linear dimen-
sion. We have assumed here that the length of the
columns is very much greater than L.

n—@ni, ©

For the 3D lattice

@ ~—

(1—4djL). N

o

Thus the columnar structure, like the 3D lattice, is
onLis
different in the two cases. On the other hand, for
smectic 4 as well as the 2D lattice {u2)> diverges as
In L.



These thermal fluctuations will naturally affect the
nature of the X-ray reflections from the columnar
phase. In the presence of such vibrations, the structure
factor is

S(K) = dz Z 2 exp [i {K.(n,,, —R,,)”
man
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The second exponential term on the right side is the
familiar Debye-Waller factor exp( —W). From (2)
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The first term in the integral (9) leads to (6), while the
second term simplifies to
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where p = (X2 + yz)% and U is the confluent
hypergeometric Kummer function*. For

~

z=> (P X)% this simplifies further to
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These results are quite different from those for smectic
A and the 2D lattice. For smectic A% with its liquid-
like layers parallel to xy, we have instead of (11)
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It is this logarithmic form of the displacement—
displacement correlation in smectic A and the 2D
lattice that washes out the Bragg reflections (or the
§-function singularities in S(K))and results in much
weaker singularities. On the other hand the columnar
liquid crystal does give Bragg reflections. To evaluate
the thermal diffuse part of S(K)arising from fluctua-
tions, one has to make use of the full expression (10).

So far it has been assumed that the length (L") of the
liquid columns is much larger than L. One may
similarly consider the opposite extreme situation
L' € L. In this case, it turns out that for the bounded
sample .

<u2> ~ const for very small L’
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If one of the surfaces is free there are additional terms
that are peculiar to the 2D lattice.

Note added in proof

We have just received a preprint of a paper by
Kammensky and Kats of the Landau Institute of
Theoretical Physics, Moscow, discussing the same
problem in considerable detail—in fact more
thoroughly than has been done by us. The general
conclusions of this paper are essentially. identical to
ours, but the treatment includes the vibrations of the
columns parallel to themselves, a complete analysis of
the effects of a free surface, long and short columns,
etc.

One of us (SC) would like to take this opportunity
of thanking Dr. E. I. Kats and Dr. V. G. Kammensky
for the discussions he had with them in Moscow in
November 1981 on this and other related topics.
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